PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Deep sequencing uncovers commonality in small RNA profiles between transgene-induced and naturally occurring RNA silencing of chalcone synthase-A gene in petunia 
BMC Genomics  2013;14:63.
Background
Introduction of a transgene that transcribes RNA homologous to an endogenous gene in the plant genome can induce silencing of both genes, a phenomenon termed cosuppression. Cosuppression was first discovered in transgenic petunia plants transformed with the CHS-A gene encoding chalcone synthase, in which nonpigmented sectors in flowers or completely white flowers are produced. Some of the flower-color patterns observed in transgenic petunias having CHS-A cosuppression resemble those in existing nontransgenic varieties. Although the mechanism by which white sectors are generated in nontransgenic petunia is known to be due to RNA silencing of the CHS-A gene as in cosuppression, whether the same trigger(s) and/or pattern of RNA degradation are involved in these phenomena has not been known. Here, we addressed this question using deep-sequencing and bioinformatic analyses of small RNAs.
Results
We analyzed short interfering RNAs (siRNAs) produced in nonpigmented sectors of petal tissues in transgenic petunia plants that have CHS-A cosuppression and a nontransgenic petunia variety Red Star, that has naturally occurring CHS-A RNA silencing. In both silencing systems, 21-nt and 22-nt siRNAs were the most and the second-most abundant size classes, respectively. CHS-A siRNA production was confined to exon 2, indicating that RNA degradation through the RNA silencing pathway occurred in this exon. Common siRNAs were detected in cosuppression and naturally occurring RNA silencing, and their ranks based on the number of siRNAs in these plants were correlated with each other. Noticeably, highly abundant siRNAs were common in these systems. Phased siRNAs were detected in multiple phases at multiple sites, and some of the ends of the regions that produced phased siRNAs were conserved.
Conclusions
The features of siRNA production found to be common to cosuppression and naturally occurring silencing of the CHS-A gene indicate mechanistic similarities between these silencing systems especially in the biosynthetic processes of siRNAs including cleavage of CHS-A transcripts and subsequent production of secondary siRNAs in exon 2. The data also suggest that these events occurred at multiple sites, which can be a feature of these silencing phenomena.
doi:10.1186/1471-2164-14-63
PMCID: PMC3608071  PMID: 23360437
Chalcone synthase; Cosuppression; Deep-sequencing analysis; Flower color pattern; Naturally occurring RNA silencing; Short interfering RNA
2.  Multi-Objective Genetic Algorithm for Pseudoknotted RNA Sequence Design 
RNA inverse folding is a computational technology for designing RNA sequences which fold into a user-specified secondary structure. Although pseudoknots are functionally important motifs in RNA structures, less reports concerning the inverse folding of pseudoknotted RNAs have been done compared to those for pseudoknot-free RNA design. In this paper, we present a new version of our multi-objective genetic algorithm (MOGA), MODENA, which we have previously proposed for pseudoknot-free RNA inverse folding. In the new version of MODENA, (i) a new crossover operator is implemented and (ii) pseudoknot prediction methods, IPknot and HotKnots, are used to evaluate the designed RNA sequences, allowing us to perform the inverse folding of pseudoknotted RNAs. The new version of MODENA with the new crossover operator was benchmarked with a dataset composed of natural pseudoknotted RNA secondary structures, and we found that MODENA can successfully design more pseudoknotted RNAs compared to the other pseudoknot design algorithm. In addition, a sequence constraint function newly implemented in the new version of MODENA was tested by designing RNA sequences which fold into the pseudoknotted structure of a hepatitis delta virus ribozyme; as a result, we successfully designed eight RNA sequences. The new version of MODENA is downloadable from http://rna.eit.hirosaki-u.ac.jp/modena/.
doi:10.3389/fgene.2012.00036
PMCID: PMC3337422  PMID: 22558001
inverse folding; pseudoknot; secondary structure; pseudobase; Rfam; sequence constraint
3.  MODENA: a multi-objective RNA inverse folding 
Artificially synthesized RNA molecules have recently come under study since such molecules have a potential for creating a variety of novel functional molecules. When designing artificial RNA sequences, secondary structure should be taken into account since functions of noncoding RNAs strongly depend on their structure. RNA inverse folding is a methodology for computationally exploring the RNA sequences folding into a user-given target structure. In the present study, we developed a multi-objective genetic algorithm, MODENA (Multi-Objective DEsign of Nucleic Acids), for RNA inverse folding. MODENA explores the approximate set of weak Pareto optimal solutions in the objective function space of 2 objective functions, a structure stability score and structure similarity score. MODENA can simultaneously design multiple different RNA sequences at 1 run, whose lowest free energies range from a very stable value to a higher value near those of natural counterparts. MODENA and previous RNA inverse folding programs were benchmarked with 29 target structures taken from the Rfam database, and we found that MODENA can successfully design 23 RNA sequences folding into the target structures; this result is better than those of the other benchmarked RNA inverse folding programs. The multi-objective genetic algorithm gives a useful framework for a functional biomolecular design. Executable files of MODENA can be obtained at http://rna.eit.hirosaki-u.ac.jp/modena/.
PMCID: PMC3169953  PMID: 21918633
multi-objective genetic algorithm; secondary structure; RNA sequence design; Rfam
4.  A small nucleolar RNA functions in rRNA processing in Caenorhabditis elegans 
Nucleic Acids Research  2010;38(17):5909-5918.
CeR-2 RNA is one of the newly identified Caenorhabditis elegans noncoding RNAs (ncRNAs). The characterization of CeR-2 by RNomic studies has failed to classify it into any known ncRNA family. In this study, we examined the spatiotemporal expression patterns of CeR-2 to gain insight into its function. CeR-2 is expressed in most cells from the early embryo to adult stages. The subcellular localization of this RNA is analogous to that of fibrillarin, a major protein of the nucleolus. It was observed that knockdown of C/D small nucleolar ribonucleoproteins (snoRNPs), but not of H/ACA snoRNPs, resulted in the aberrant nucleolar localization of CeR-2 RNA. A mutant worm with a reduced amount of cellular CeR-2 RNA showed changes in its pre-rRNA processing pattern compared with that of the wild-type strain N2. These results suggest that CeR-2 RNA is a C/D snoRNA involved in the processing of rRNAs.
doi:10.1093/nar/gkq335
PMCID: PMC2943600  PMID: 20460460
5.  An efficient genetic algorithm for structural RNA pairwise alignment and its application to non-coding RNA discovery in yeast 
BMC Bioinformatics  2008;9:521.
Background
Aligning RNA sequences with low sequence identity has been a challenging problem since such a computation essentially needs an algorithm with high complexities for taking structural conservation into account. Although many sophisticated algorithms for the purpose have been proposed to date, further improvement in efficiency is necessary to accelerate its large-scale applications including non-coding RNA (ncRNA) discovery.
Results
We developed a new genetic algorithm, Cofolga2, for simultaneously computing pairwise RNA sequence alignment and consensus folding, and benchmarked it using BRAliBase 2.1. The benchmark results showed that our new algorithm is accurate and efficient in both time and memory usage. Then, combining with the originally trained SVM, we applied the new algorithm to novel ncRNA discovery where we compared S. cerevisiae genome with six related genomes in a pairwise manner. By focusing our search to the relatively short regions (50 bp to 2,000 bp) sandwiched by conserved sequences, we successfully predict 714 intergenic and 1,311 sense or antisense ncRNA candidates, which were found in the pairwise alignments with stable consensus secondary structure and low sequence identity (≤ 50%). By comparing with the previous predictions, we found that > 92% of the candidates is novel candidates. The estimated rate of false positives in the predicted candidates is 51%. Twenty-five percent of the intergenic candidates has supports for expression in cell, i.e. their genomic positions overlap those of the experimentally determined transcripts in literature. By manual inspection of the results, moreover, we obtained four multiple alignments with low sequence identity which reveal consensus structures shared by three species/sequences.
Conclusion
The present method gives an efficient tool complementary to sequence-alignment-based ncRNA finders.
doi:10.1186/1471-2105-9-521
PMCID: PMC2630964  PMID: 19061486

Results 1-5 (5)