PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Structural and Functional Characterization of Nrf2 Degradation by the Glycogen Synthase Kinase 3/β-TrCP Axis 
Molecular and Cellular Biology  2012;32(17):3486-3499.
The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of a genetic program, termed the phase 2 response, that controls redox homeostasis and participates in multiple aspects of physiology and pathology. Nrf2 protein stability is regulated by two E3 ubiquitin ligase adaptors, Keap1 and β-TrCP, the latter of which was only recently reported. Here, two-dimensional (2D) gel electrophoresis and site-directed mutagenesis allowed us to identify two serines of Nrf2 that are phosphorylated by glycogen synthase kinase 3β (GSK-3β) in the sequence DSGISL. Nuclear magnetic resonance studies defined key residues of this phosphosequence involved in docking to the WD40 propeller of β-TrCP, through electrostatic and hydrophobic interactions. We also identified three arginine residues of β-TrCP that participate in Nrf2 docking. Intraperitoneal injection of the GSK-3 inhibitor SB216763 led to increased Nrf2 and heme oxygenase-1 levels in liver and hippocampus. Moreover, mice with hippocampal absence of GSK-3β exhibited increased levels of Nrf2 and phase 2 gene products, reduced glutathione, and decreased levels of carbonylated proteins and malondialdehyde. This study establishes the structural parameters of the interaction of Nrf2 with the GSK-3/β-TrCP axis and its functional relevance in the regulation of Nrf2 by the signaling pathways that impinge on GSK-3.
doi:10.1128/MCB.00180-12
PMCID: PMC3422007  PMID: 22751928
2.  Contact-based ligand-clustering approach for the identification of active compounds in virtual screening 
Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM) represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.
doi:10.2147/AABC.S30881
PMCID: PMC3459543  PMID: 23055752
scoring; docking; virtual screening; CAR; AuPosSOM
3.  Synthesis and glycosidase inhibitory activity of new hexa-substituted C8-glycomimetics 
Background
Glycosidases are involved in several metabolic pathways and the development of inhibitors is an important challenge towards the treatment of diseases, such as diabetes, cancer and viral infections including AIDS. Thus, inhibition of intestinal α-glucosidases can be used to treat diabetes through the lowering of blood glucose levels, and α-glucosidase inhibitors are being marketed against type 2 (non-insulinodependent mellitus) diabetes (i.e.: Glyset® or Diastabol®, Basen® and Glucor® or Precose®).
Results
In that context, new C8-carbasugars and related aminocyclitols have been targeted in order to study the effect of the enhanced flexibility and of the new spatial distribution displayed by these structures on their adaptability in the active site of the enzymes. The synthesis of these new C8-glycomimetics is described from enantiomerically pure C2-symmetrical polyhydroxylated cyclooctenes. Their obtention notably involved a syn-dihydroxylation, and more extended functionalization through formation of a cis-cyclic sulfate followed by amination and subsequent reductive amination. This strategy involving the nucleophilic opening of a cis-cyclic sulfate by sodium azide is to our knowledge the first example in C8-series. It revealead to be an efficient alternative to the nucleoplilic opening of an epoxide moiety which proved unsuccessful in this particular case, due to the hindered conformation of such epoxides as demonstrated by X-ray cristallographic analysis.
Conclusion
The biological activity of the synthesized glycomimetics has been evaluated towards 24 commercially available glycosidases. The weak observed activities can probably be related to the spatial disposition of the hydroxy and amino groups which depart too much from that realized in glycomimetics such as valiolamine, voglibose and valienamine. Nevertheless, the synthetic strategy described here is efficient and general, and could be extended to increase the diversity of the glycosidase inhibitors obtained since this diversity is introduced in an ultimate step of the synthesis.
doi:10.1186/1860-5397-1-12
PMCID: PMC1399460  PMID: 16542023

Results 1-3 (3)