PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  N-acetylcysteine decreased nicotine self-administration and cue-induced reinstatement of nicotine seeking in rats: Comparison with the effects of N-acetylcysteine on food responding and food seeking 
Psychopharmacology  2012;225(2):473-482.
Rationale
Chronic nicotine administration decreases the functioning of the cystine-glutamate antiporter system xc_ which is hypothesized to promote nicotine-taking and -seeking behaviors. N-acetylcysteine (NAC), a cystine pro-drug, increases the activity of the cystine-glutamate antiporter system xc_. Thus, NAC could potentially reverse nicotine-induced alterations in glutamatergic transmission and decrease nicotine taking and seeking.
Objectives and Methods
To test this hypothesis in the present study, the effects of acute NAC treatment (30, 60, 90 mg/kg i.p.) on nicotine (fixed- and progressive-ratio schedules) and food (fixed-ratio schedule) self-administration were assessed in rats. In addition, the effects of acute NAC treatment on cue-induced reinstatement of nicotine- and food-seeking behaviors were investigated. Finally, the effects of repeated daily NAC administration (60 mg/kg, i.p., 14 days) on nicotine and food self-administration were assessed.
Results
Acute NAC administration decreased nicotine self-administration but not food responding under a fixed-ratio schedule of reinforcement. In addition, acute NAC administration showed a non-significant trend in attenuating nicotine self-administration under a progressive-ratio schedule that was similar to the dose-response function under the fixed-ratio schedule. Furthermore, repeated NAC administration decreased nicotine self-administration from day 6 to 14 compared with vehicle treatment, with no indication of tolerance development. By contrast, repeated NAC administration decreased food responding from day 6 to 8 compared with vehicle treatment, and showed rapid development of tolerance. Finally, NAC administration attenuated cue-induced reinstatement of nicotine and food seeking.
Conclusions
Altogether, these findings suggest that NAC may be useful in promoting smoking cessation in humans.
doi:10.1007/s00213-012-2837-3
PMCID: PMC3697766  PMID: 22903390
motivation; extinction; glutamate; food responding; drug abuse; dependence
2.  Orally Active Metabotropic Glutamate Subtype 2 Receptor Positive Allosteric Modulators: Structure-Activity Relationships and Assessment in a Rat Model of Nicotine Dependence 
Journal of medicinal chemistry  2012;55(22):9434-9445.
Compounds that modulate metabotropic glutamate subtype 2 (mGlu2) receptors have the potential to treat several disorders of the central nervous system (CNS) including drug dependence. Herein we describe the synthesis and structure-activity relationship (SAR) studies around a series of mGlu2 receptor positive allosteric modulators (PAMs). The effects of N-substitution (R1) and substitutions on the aryl ring (R2) were identified as key areas for SAR exploration (Figure 3). Investigation of the effects of varying substituents in both the isoindolinone (2) and benzisothiazolone (3) series led to compounds with improved in vitro potency and/or efficacy. In addition, several analogues exhibited promising pharmacokinetic (PK) properties. Furthermore, compound 2 was shown to dose-dependently decrease nicotine self-administration in rats following oral administration. Our data, showing for the first time efficacy of an mGlu2 receptor PAM in this in vivo model, suggest potential utility for the treatment of nicotine dependence in humans.
doi:10.1021/jm3005306
PMCID: PMC3508153  PMID: 23009245
Metabotropic glutamate receptors; agonist; positive allosteric modulators; BINA; nicotine self-administration; rat model; addiction
3.  Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits 
Neuropharmacology  2011;62(3):1564-1573.
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Very high rates of tobacco smoking are seen in patients with schizophrenia. Importantly, smokers with schizophrenia generally have higher nicotine dependence scores, experience more severe withdrawal symptoms upon smoking cessation, have lower cessation rates than healthy individuals, and suffer from significant smoking-related morbidity and premature mortality compared with the general population. Interestingly, significant disturbances in cholinergic function are reported in schizophrenia patients. The high smoking-schizophrenia comorbidity observed in schizophrenia patients may be an attempt to compensate for this cholinergic dysfunction. Cholinergic neurotransmission plays an important role in cognition and is hypothesized to play an important role in schizophrenia-associated cognitive deficits. In this review, preclinical evidence highlighting the beneficial effects of nicotine and subtype-selective nicotinic receptor agonists in schizophrenia-associated cognitive deficits, such as working memory and attention, is discussed. Furthermore, some of the challenges involved in the development of procognitive medications, particularly subtype-selective nicotinic receptor agonists, are also discussed. Amelioration of schizophrenia-associated cognitive deficits may help in the treatment of schizophrenia-smoking comorbidity by promoting smoking cessation and thus help in the better management of schizophrenia patients.
doi:10.1016/j.neuropharm.2011.01.044
PMCID: PMC3116036  PMID: 21288470
4.  Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) microinfusions into the nucleus accumbens shell or ventral tegmental area attenuate the reinforcing effects of nicotine in rats 
Neuropharmacology  2011;61(8):1399-1405.
Systemic administration of the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) was previously shown to selectively attenuate nicotine self-administration without affecting food-maintained responding in rats. Glutamatergic neurotransmission in the ventral tegmental area (VTA) and nucleus accumbens (NAcc) shell plays an important role in the reinforcing effects of nicotine. To determine the brain sites that may mediate the systemic effects of MPEP on nicotine self-administration, the present study investigated the effects of MPEP microinfusions into the VTA or the NAcc shell on nicotine and food self-administration in separate groups of rats. Administration of low MPEP doses (0, 0.5, 1, and 2 μg/0.5 μl/side) microinfused into the NAcc shell had no effect on nicotine self-administration, whereas higher MPEP doses (0, 10, 20, and 40 μg/0.5 μl/side) microinfused into the NAcc shell dose-dependently attenuated nicotine self-administration without affecting food-maintained responding. Microinfusions of MPEP into the VTA (0, 10, 20, and 40 μg/0.5 μl/side) significantly decreased both nicotine and food self-administration at 20 μg/0.5 μl/side but did not affect responding for either reinforcer at 40 μg/0.5 μl/side. This lack of effect of 40 μg/0.5 μl/side MPEP on either nicotine or food self-administration when administered into the VTA may be attributable either to actions of MPEP at presynaptic mGlu5 receptors or at targets other than mGlu5 receptors. Importantly, anatomical control injections 2 mm above the NAcc shell or the VTA using the most effective MPEP dose in the two regions did not result in attenuation of nicotine self-administration. In conclusion, MPEP microinfusions in the VTA or NAcc shell attenuates the reinforcing effects of nicotine possibly via blockade of mGlu5 receptors located in these regions.
doi:10.1016/j.neuropharm.2011.08.028
PMCID: PMC3189265  PMID: 21896278
5.  The Metabotropic Glutamate 2/3 Receptor Agonist LY379268 Blocked Nicotine-Induced Increases in Nucleus Accumbens Shell Dopamine only in the Presence of a Nicotine-Associated Context in Rats 
Neuropsychopharmacology  2011;36(10):2111-2124.
The metabotropic glutamate 2/3 (mGlu2/3) receptor agonist LY379268 ([−]-2-oxa-4-aminobicyclo [3.1.0] hexane-4,6-dicarboxylate) attenuates both nicotine self-administration and cue-induced nicotine seeking in rats. In this study, the effects of LY379268 (1 mg/kg) or saline pretreatment on nicotine-induced increases in nucleus accumbens (NAcc) shell dopamine were evaluated using in vivo microdialysis under different experimental conditions: (i) nicotine (0.4 mg/kg, base) was experimenter-administered subcutaneously to nicotine-naïve rats; (ii) nicotine was experimenter-administered either subcutaneously (0.4 mg/kg) or by a single experimenter-administered infusion (0.06 mg/kg, base) in rats with a history of nicotine self-administration (nicotine experienced) in the absence of a nicotine-associated context (ie, context and cues associated with nicotine self-administration); (iii) nicotine (0.06 mg/kg) was self-administered or experimenter-administered in nicotine-experienced rats in the presence of a nicotine-associated context. In saline-pretreated nicotine-naïve and nicotine-experienced rats, nicotine increased NAcc shell dopamine regardless of the context used for testing. Interestingly, LY379268 pretreatment blocked nicotine-induced increases in NAcc shell dopamine in nicotine-experienced rats only when tested in the presence of a nicotine-associated context. LY379268 did not block nicotine-induced increases in NAcc shell dopamine in nicotine-naïve or -experienced rats tested in the absence of a nicotine-associated context. These intriguing findings suggest that activation of mGlu2/3 receptors negatively modulates the combined effects of nicotine and nicotine-associated contexts/cues on NAcc dopamine. Thus, these data highlight a critical role for mGlu2/3 receptors in context/cue-induced drug-seeking behavior and suggest a neurochemical mechanism by which mGlu2/3 receptor agonists may promote smoking cessation by preventing relapse induced by the combination of nicotine and nicotine-associated contexts and cues.
doi:10.1038/npp.2011.103
PMCID: PMC3158309  PMID: 21654734
motivation; self-administration; metabotropic glutamate receptor; microdialysis; dopamine; neuropharmacology; addiction & substance abuse; dopamine; glutamate; motivation; self-administration; microdialysis; metabotropic; nicotine
6.  Neuronal Mechanisms Underlying Development of Nicotine Dependence: Implications for Novel Smoking-Cessation Treatments 
Tobacco smoking causes high rates of mortality and morbidity throughout the world. Despite the availability of smoking-cessation medications, maintenance of long-term abstinence is difficult, and most individuals who attempt to quit smoking relapse. Although tobacco smoke contains many substances, researchers and policymakers agree that nicotine is a major cause of tobacco dependence. Understanding the neural substrates of nicotine dependence is essential for the development of more effective antismoking medications than those currently available. This article focuses on the neural substrates, especially nicotinic acetylcholine receptors, that mediate the reinforcing effects of nicotine and the development of nicotine dependence. Neuroadaptations in the function of the neurotransmitters dopamine, glutamate, and gamma-aminobutyric acid (GABA), which have been shown to be critically involved in nicotine dependence, are also reviewed. Finally, the article discusses progress in the discovery and development of smoking-cessation medications.
PMCID: PMC3188825  PMID: 22003417
7.  Certain or uncertain cocaine expectations influence accumbens dopamine responses to self-administered cocaine and non-rewarded operant behavior 
Uncertainty and errors in predicting natural rewards influence associative learning and dopamine activity. The present study was conducted to determine the influence of cue-induced cocaine uncertainty, certainty and prediction error on nucleus accumbens dopamine (NAcc DA) in rats. For Certainty training, distinctive sensory cues were present during cocaine availability and alternate cues were paired with non-reinforced (saline) operant sessions. For Uncertainty training, all cues were equally associated with both cocaine and non-reinforcement. After training, animals self-administered cocaine or saline in the presence of conditioned cues while NAcc DA responses were assessed using in vivo microdialysis. Findings revealed cocaine-stimulated NAcc DA increased significantly less in Certainty- compared to Uncertainty-trained animals, and cocaine-paired cues in the absence of cocaine (Negative Prediction Error) resulted in a significant depression of baseline NAcc DA. These findings provide support for enhanced DA activity during cocaine uncertainty or the development of conditioned cocaine tolerance in subjects certain of a cocaine outcome.
doi:10.1016/j.euroneuro.2008.04.005
PMCID: PMC2630114  PMID: 18499407
uncertainty; prediction error; conditioned tolerance; nucleus accumbens; dopamine; expected nonreward
8.  Experience-Dependent Effects of Cocaine Self-Administration/Conditioning on Prefrontal and Accumbens Dopamine Responses 
Behavioral neuroscience  2007;121(2):389-400.
Experiments were performed to examine the effects of cocaine self-administration and conditioning experience on operant behavior, locomotor activity, and nucleus accumbens (NAcc) and prefrontal cortex (PFC) dopamine (DA) responses. Sensory cues were paired with alternating cocaine and nonreinforcement during 12 (limited training) or 40 (long-term training) daily operant sessions. After limited training, NAcc DA responses to cocaine were significantly enhanced in the presence of cocaine-associated cues compared with nonreward cues and significantly depressed after cocaine-paired cues accompanied a nonreinforced lever response. PFC DA levels were generally nonresponsive to cues after the same training duration. However, after long-term training, cocaine-associated cues increased the magnitude of cocaine-stimulated PFC DA levels significantly over levels observed with nonreinforcement cues. Conversely, conditioned cues no longer influenced NAcc DA levels after long-term training. In addition, cocaine-stimulated locomotor activity was enhanced by cocaine-paired cues after long-term, but not after limited, training. Findings demonstrate that cue-induced cocaine expectation exerts a significant impact on dopaminergic and behavioral systems, progressing from mesolimbic to mesocortical regions and from latent to patent behaviors as cocaine and associative experiences escalate.
doi:10.1037/0735-7044.121.2.389
PMCID: PMC2565684  PMID: 17469929
microdialysis; drug abuse; operant; reinforcement; reward

Results 1-8 (8)