PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Mutation Spectrum in the Large GTPase Dynamin 2, and Genotype–Phenotype Correlation in Autosomal Dominant Centronuclear Myopathy 
Human mutation  2012;33(6):949-959.
Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype–phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot–Marie–Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT.
doi:10.1002/humu.22067
PMCID: PMC3374402  PMID: 22396310
centronuclear myopathy; congenital myopathy; Charcot–Marie–Tooth neuropathy; DNM2; ADCNM; CMTD1B; DI-CMTB; CMT2M; hereditary motor and sensory neuropathy type II; HMSNII; MTM1; myotubular myopathy; BIN1; RYR1; endocytosis
2.  Deletion of exon 26 of the dystrophin gene is associated with a mild Becker muscular dystrophy phenotype 
Acta Myologica  2011;30(3):182-184.
With the possible introduction of exon skipping therapy in Duchenne muscular dystrophy, it has become increasingly important to know the role of each exon of the dystrophin gene to protein expression, and thus the phenotype. In this report, we present two related men with an unusually mild BMD associated with an exon 26 deletion. The proband, a 23-year-old man, had slightly delayed motor milestones, walking 1½ years old. He had no complaints of muscle weakness, but had muscle pain. Clinical examination revealed no muscle wasting or loss of power, but his CK was 1500-7000 U/l. Muscle biopsy showed dystrophic changes. He had comorbidity with dystonia, slight mental retardation, low stature and neuropathy. The brother of the proband's mother came to medical attention when he was 43 years old. He complained about muscle pain. On examination, a MRC grade 4+ hip extention palsy and a discrete calf hypertrophy was noted. Creatine kinase was normal or raised maximally to 500U/l. The muscle biopsy was myopathic with increased fiber size variation and many internal nuclei, but no dystrophy. No comorbidity was found. In both cases, western blot showed a reduced dystrophin band. Genetic evaluation revealed a deletion of exon 26 of the dystrophin gene in both. This is the first description of patients with a exon 26 deletion of the dystrophin gene. Assuming the proband's comorbidity is unrelated, exon 26 deletion results in a very mild phenotype. This might be of interest in planning exon skipping therapy for Duchenne muscular dystrophy. This report also shows that BMD may present with a normal CK.
PMCID: PMC3298095  PMID: 22616200
BMD; dystrophin; deletion; exon 26

Results 1-2 (2)