PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (25)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Lysoplex: An efficient toolkit to detect DNA sequence variations in the autophagy-lysosomal pathway 
Autophagy  2015;11(6):928-938.
The autophagy-lysosomal pathway (ALP) regulates cell homeostasis and plays a crucial role in human diseases, such as lysosomal storage disorders (LSDs) and common neurodegenerative diseases. Therefore, the identification of DNA sequence variations in genes involved in this pathway and their association with human diseases would have a significant impact on health. To this aim, we developed Lysoplex, a targeted next-generation sequencing (NGS) approach, which allowed us to obtain a uniform and accurate coding sequence coverage of a comprehensive set of 891 genes involved in lysosomal, endocytic, and autophagic pathways. Lysoplex was successfully validated on 14 different types of LSDs and then used to analyze 48 mutation-unknown patients with a clinical phenotype of neuronal ceroid lipofuscinosis (NCL), a genetically heterogeneous subtype of LSD. Lysoplex allowed us to identify pathogenic mutations in 67% of patients, most of whom had been unsuccessfully analyzed by several sequencing approaches. In addition, in 3 patients, we found potential disease-causing variants in novel NCL candidate genes. We then compared the variant detection power of Lysoplex with data derived from public whole exome sequencing (WES) efforts. On average, a 50% higher number of validated amino acid changes and truncating variations per gene were identified. Overall, we identified 61 truncating sequence variations and 488 missense variations with a high probability to cause loss of function in a total of 316 genes. Interestingly, some loss-of-function variations of genes involved in the ALP pathway were found in homozygosity in the normal population, suggesting that their role is not essential. Thus, Lysoplex provided a comprehensive catalog of sequence variants in ALP genes and allows the assessment of their relevance in cell biology as well as their contribution to human disease.
doi:10.1080/15548627.2015.1043077
PMCID: PMC4502703  PMID: 26075876
autophagy; genetic variants; lysosomal storage disorders; neuronal ceroid lipofuscinoses; next-generation sequencing; ALP, autophagy-lysosomal pathway; LSDs, lysosomal storage disorders; NGS, next-generation sequencing; NCL, neuronal ceroid lipofuscinosis; WES, whole exome sequencing; WGS, whole genome sequencing.
2.  Myoimaging in the NGS era: the discovery of a novel mutation in MYH7 in a family with distal myopathy and core-like features – a case report 
BMC Medical Genetics  2016;17:25.
Background
Myosin heavy chain 7 related myopathies are rare disorders characterized by a wide phenotypic spectrum and heterogeneous pathological features. In the present study, we performed clinical, morphological, genetic and imaging investigations in three relatives affected by autosomal dominant distal myopathy. Whilst earlier traditional Sanger investigations had pointed to the wrong gene as disease causative, next-generation sequencing allowed us to obtain the definitive molecular genetic diagnosis in the family.
Case presentation
The proposita, being found to harbor a novel heterozygous mutation in the RYR1 gene (p.Glu294Lys), was initially diagnosed with core myopathy. Subsequently, consideration of muscle magnetic resonance imaging (MRI) features and extension of family study led this diagnosis to be questioned. Use of next-generation sequencing analysis identified a novel mutation in the MYH7gene (p.Ser1435Pro) that segregated in the affected family members.
Conclusions
This study identified a novel mutation in MYH7 in a family where the conclusive molecular diagnosis was reached through a complicated path. This case report might raise awareness, among clinicians, of the need to interpret NGS data in combination with muscle MRI patterns so as to facilitate the pinpointing of the main molecular etiology in inherited muscle disorders.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-016-0288-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s12881-016-0288-0
PMCID: PMC4804697  PMID: 27005958
Core myopathies; MYH7; RYR1; Muscle MRI; Next-generation sequencing
3.  GYG1 gene mutations in a family with polyglucosan body myopathy 
Neurology: Genetics  2015;1(3):e21.
Defects in enzymes involved in glycogen metabolism result in glycogen storage diseases (GSDs), which may affect the skeletal and sometimes also the cardiac muscle. The most frequent abnormality causing GSDs is glycogen storage, whereas other and uncommon forms of GSD are due to a perturbation of the branching structure of glycogen. These latter GSDs are characterized by an accumulation of polyglucosan (PG),1 an abnormal polysaccharide with few branched points and excessively long peripheral chains. PG is accumulated in PG bodies that can be easily identified in muscle by their typical features using histopathologic (strong periodic acid–Schiff [PAS] reaction, resistance to diastase digestion) and ultrastructural analyses.
doi:10.1212/NXG.0000000000000021
PMCID: PMC4809457  PMID: 27066558
4.  Next generation sequencing on patients with LGMD and nonspecific myopathies: Findings associated with ANO5 mutations 
Neuromuscular Disorders  2015;25(7):533-541.
Highlights
•We have carried out the largest screening of the ANO5 gene.•We identified 33 patients (4%) with pathogenic changes in both alleles and 23 heterozygotes (3%).•The identification of a ANO5 carrier is not to be considered an uncommon finding.•The anoctaminopathies have an extremely high genetic and phenotypic heterogeneity.•NGS-based strategies are perfect to dissect the clinical variability in NMDs.
We studied 786 undiagnosed patients with LGMD or nonspecific myopathic features to investigate the role of ANO5 mutations in limb-girdle muscular dystrophies (LGMDs) and in nonspecific myopathies using the next generation sequencing (NGS) approach. In 160 LGMD patients, we first sequenced hotspot exons 5 and 20 and then sequenced the remaining part of the coding region. Another 626 patients, recruited using broader inclusion criteria, were directly analyzed by targeted NGS. By combining NGS and Sanger sequencing, we identified 33/786 (4%) patients carrying putative pathogenic changes in both alleles and 23 ANO5 heterozygotes (3%). The phenotypic spectrum is broader than expected, from hyperCKemia to myopathies, with lack of genotype/phenotype correlations. In particular, this is currently the largest screening of the ANO5 gene. The large number of heterozygotes for damaging mutations suggests that anoctaminopathies should be frequent and often nonpenetrant. We propose the multiple genetic testing by targeted NGS as a first step to analyze patients with nonspecific myopathic presentations. This represents a straightforward approach to overcome the difficulties of clinical heterogeneity of ANO5 patients, and to test, at the same time, many other genes involved in neuromuscular disorders.
doi:10.1016/j.nmd.2015.03.011
PMCID: PMC4502439  PMID: 25891276
Next generation sequencing; Muscular dystrophy; LGMD2L; Anoctamin; NGS screening; Targeted resequencing; Limb girdle muscular dystrophy
5.  Exome sequencing of a family with lone, autosomal dominant atrial flutter identifies a rare variation in ABCB4 significantly enriched in cases 
BMC Genetics  2015;16:15.
Background
Lone atrial flutter (AFL) and atrial fibrillation (AF) are common and sometimes consequential cardiac conduction disorders with a strong heritability, as underlined by recent genome-wide association studies that identified genetic modifiers. Follow-up family-based genetic analysis also identified Mendelian transmission of disease alleles. Three affected members were exome-sequenced for the identification of potential causative mutations, which were subsequently validated by direct sequencing in the other 3 affected members. Taqman assay was then used to confirm the role of any mutation in an independent population of sporadic lone AFL/AF cases.
Results
The family cluster analysis provided evidence of genetic inheritance of AFL in the family via autosomal dominant transmission. The exome-sequencing of 3 family members identified 7 potential mutations: of these, rs58238559, a rare missense genetic variant in the ATP-binding cassette sub-family B, member 4 (ABCB4) gene was carried by all affected members. Further analysis of 82 subjects with sporadic lone AF, 63 subjects with sporadic lone AFL, and 673 controls revealed that the allele frequency for this variation was significantly higher in cases than in the controls (0.05 vs. 0.01; OR = 3.73; 95% CI = 1.16–11.49; P = 0.013).
Conclusions
rs58238559 in ABCB4 is a rare missense variant with a significant effect on the development of AFL/AF.
Electronic supplementary material
The online version of this article (doi:10.1186/s12863-015-0177-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s12863-015-0177-0
PMCID: PMC4342200  PMID: 25888430
Pedigree; Atrial flutter; Atrial fibrillation; SNPs; Exome-sequencing; ATP-binding cassette B4 (ABCB4)
6.  Prevalence of Anti–Adeno-Associated Virus Serotype 8 Neutralizing Antibodies and Arylsulfatase B Cross-Reactive Immunologic Material in Mucopolysaccharidosis VI Patient Candidates for a Gene Therapy Trial 
Human Gene Therapy  2015;26(3):145-152.
Abstract
Recombinant vectors based on adeno-associated virus serotype 8 (AAV8) have been successfully used in the clinic and hold great promise for liver-directed gene therapy. Preexisting immunity against AAV8 or the development of antibodies against the therapeutic transgene product might negatively affect the outcomes of gene therapy. In the prospect of an AAV8-mediated, liver-directed gene therapy clinical trial for mucopolysaccharidosis VI (MPS VI), a lysosomal storage disorder caused by arylsulfatase B (ARSB) deficiency, we investigated in a multiethnic cohort of MPS VI patients the prevalence of neutralizing antibodies (Nab) to AAV8 and the presence of ARSB cross-reactive immunologic material (CRIM), which will either affect the efficacy of gene transfer or the duration of phenotypic correction. Thirty-six MPS VI subjects included in the study harbored 45 (62.5%) missense, 13 (18%) nonsense, 9 (12.5%) frameshift (2 insertions and 7 deletions), and 5 (7%) splicing ARSB mutations. The detection of ARSB protein in 24 patients out of 34 (71%) was predicted by the type of mutations. Preexisting Nab to AAV8 were undetectable in 19/33 (58%) analyzed patients. Twelve out of 31 patients (39%) tested were both negative for Nab to AAV8 and CRIM-positive. In conclusion, this study allows estimating the number of MPS VI patients eligible for a gene therapy trial by intravenous injections of AAV8.
doi:10.1089/hum.2014.109
PMCID: PMC4367235  PMID: 25654180
7.  A G613A missense in the Hutchinson’s progeria lamin A/C gene causes a lone, autosomal dominant atrioventricular block 
Background
LMNA/C mutations have been linked to the premature aging syndrome Hutchinson’s progeria, dilated cardiomyopathy 1A, skeletal myopathies (such as the autosomal dominant variant of Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy), Charcot-Marie-Tooth disorder type 2B1, mandibuloacral dysplasia, autosomal dominant partial lipodystrophy, and axonal neuropathy. Atrioventricular block (AVB) can be associated with several cardiac disorders and it can also be a highly heritable, primitive disease.
One of the most common pathologies associated with AVB is dilated cardiomyopathy (DCM), which is characterized by cardiac dilatation and reduced systolic function. In this case, onset has been correlated with several mutations in genes essential for the proper maturation of cardiomyocytes, such as the gene for lamin A/C. However, no clear genotype–phenotype relationship has been reported to date between LMNA/C mutations and cardiomyopathies.
Results
DNA and medical histories were collected from (n = 11) members of different generations of one family, the proband of which was implanted with a pacemaker for lone, type II AVB. Exome sequencing analysis was performed on three relatives with AVB, and the mutations therein identified validated in a further three AVB-affected family members.
In the initial three AVB family members, we identified 10 shared nonsynonymous single-nucleotide variations with a rare or unreported allele frequency in the 1000 Genomes Project database. Follow-up genetic screening in the additional three affected relatives disclosed a correlation between the lone AVB phenotype and the single-nucleotide polymorphism rs56816490, which generates an E317K change in lamin A/C. Although this mutation has already been described by others in a DCM-affected proband with familiarity for AVB and sudden death, the absence of DCM in our large, AVB-affected family is indicative of genotype–phenotype correlation between rs56816490 and a familial, autosomal dominant form of lone AVB.
Conclusions
Screening for G613A in LMNA/C in patients with lone AVB and their relatives might prevent sudden death in families affected by AVB but without familiarity for DCM. Lone AVB is an age-related disease caused by mutations in LMNA/C gene rather than a complication of DCM.
Electronic supplementary material
The online version of this article (doi:10.1186/s12979-014-0019-3) contains supplementary material, which is available to authorized users.
doi:10.1186/s12979-014-0019-3
PMCID: PMC4251685  PMID: 25469153
Arrhythmia; Dilated cardiomyopathy; Exome sequencing; Atrioventricular block; Lamin A/C
8.  MotorPlex provides accurate variant detection across large muscle genes both in single myopathic patients and in pools of DNA samples 
Mutations in ~100 genes cause muscle diseases with complex and often unexplained genotype/phenotype correlations. Next-generation sequencing studies identify a greater-than-expected number of genetic variations in the human genome. This suggests that existing clinical monogenic testing systematically miss very relevant information.
We have created a core panel of genes that cause all known forms of nonsyndromic muscle disorders (MotorPlex). It comprises 93 loci, among which are the largest and most complex human genes, such as TTN, RYR1, NEB and DMD. MotorPlex captures at least 99.2% of 2,544 exons with a very accurate and uniform coverage. This quality is highlighted by the discovery of 20-30% more variations in comparison with whole exome sequencing. The coverage homogeneity has also made feasible to apply a cost-effective pooled sequencing strategy while maintaining optimal sensitivity and specificity.
We studied 177 unresolved cases of myopathies for which the best candidate genes were previously excluded. We have identified known pathogenic variants in 52 patients and potential causative ones in further 56 patients. We have also discovered 23 patients showing multiple true disease-associated variants suggesting complex inheritance. Moreover, we frequently detected other nonsynonymous variants of unknown significance in the largest muscle genes. Cost-effective combinatorial pools of DNA samples were similarly accurate (97-99%).
MotorPlex is a very robust platform that overcomes for power, costs, speed, sensitivity and specificity the gene-by-gene strategy. The applicability of pooling makes this tool affordable for the screening of genetic variability of muscle genes also in a larger population. We consider that our strategy can have much broader applications.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-014-0100-3) contains supplementary material, which is available to authorized users.
doi:10.1186/s40478-014-0100-3
PMCID: PMC4172906  PMID: 25214167
Next generation sequencing; Myopathies; Target sequencing; Pooling; Muscular dystrophies
9.  Genetic basis of limb-girdle muscular dystrophies: the 2014 update 
Acta Myologica  2014;33(1):1-12.
Limb-girdle muscular dystrophies (LGMD) are a highly heterogeneous group of muscle disorders, which first affect the voluntary muscles of the hip and shoulder areas. The definition is highly descriptive and less ambiguous by exclusion: non-Xlinked, non-FSH, non-myotonic, non-distal, nonsyndromic, and non-congenital. At present, the genetic classification is becoming too complex, since the acronym LGMD has also been used for a number of other myopathic disorders with overlapping phenotypes. Today, the list of genes to be screened is too large for the gene-by-gene approach and it is well suited for targeted next generation sequencing (NGS) panels that should include any gene that has been so far associated with a clinical picture of LGMD. The present review has the aim of recapitulating the genetic basis of LGMD ordering and of proposing a nomenclature for the orphan forms. This is useful given the pace of new discoveries. Thity-one loci have been identified so far, eight autosomal dominant and 23 autosomal recessive. The dominant forms (LGMD1) are: LGMD1A (myotilin), LGMD1B (lamin A/C), LGMD1C (caveolin 3), LGMD1D (DNAJB6), LGMD1E (desmin), LGMD1F (transportin 3), LGMD1G (HNRPDL), LGMD1H (chr. 3). The autosomal recessive forms (LGMD2) are: LGMD2A (calpain 3), LGMD2B (dysferlin), LGMD2C (γ sarcoglycan), LGMD2D (α sarcoglycan), LGMD2E (β sarcoglycan), LGMD2F (δ sarcoglycan), LGMD2G (telethonin), LGMD2H (TRIM32), LGMD2I (FKRP), LGMD2J (titin), LGMD2K (POMT1), LGMD2L (anoctamin 5), LGMD2M (fukutin), LGMD2N (POMT2), LGMD2O (POMTnG1), LGMD2P (dystroglycan), LGMD2Q (plectin), LGMD2R (desmin), LGMD2S (TRAPPC11), LGMD2T (GMPPB), LGMD2U (ISPD), LGMD2V (Glucosidase, alpha ), LGMD2W (PINCH2).
PMCID: PMC4021627  PMID: 24843229
Limb-girdle muscular dystrophies; LGMD; NGS
10.  Cardiomyopathy in patients with POMT1-related congenital and limb-girdle muscular dystrophy 
European Journal of Human Genetics  2012;20(12):1234-1239.
Protein-o-mannosyl transferase 1 (POMT1) is a glycosyltransferase involved in α-dystroglycan (α-DG) glycosylation. Clinical phenotype in POMT1-mutated patients ranges from congenital muscular dystrophy (CMD) with structural brain abnormalities, to limb-girdle muscular dystrophy (LGMD) with microcephaly and mental retardation, to mild LGMD. No cardiac involvement has until now been reported in POMT1-mutated patients. We report three patients who harbored compound heterozygous POMT1 mutations and showed left ventricular (LV) dilation and/or decrease in myocardial contractile force: two had a LGMD phenotype with a normal or close-to-normal cognitive profile and one had CMD with mental retardation and normal brain MRI. Reduced or absent α-DG immunolabeling in muscle biopsies were identified in all three patients. Bioinformatic tools were used to study the potential effect of POMT1-detected mutations. All the detected POMT1 mutations were predicted in silico to interfere with protein folding and/or glycosyltransferase function. The report on the patients described here has widened the clinical spectrum associated with POMT1 mutations to include cardiomyopathy. The functional impact of known and novel POMT1 mutations was predicted with a bioinformatics approach, and results were compared with previous in vitro studies of protein-o-mannosylase function.
doi:10.1038/ejhg.2012.71
PMCID: PMC3499746  PMID: 22549409
POMT1; LGMD; CMD; cardiomyopathy; α-dystroglycan glycosylation
11.  Next-Generation Sequencing Identifies Transportin 3 as the Causative Gene for LGMD1F 
PLoS ONE  2013;8(5):e63536.
Limb-girdle muscular dystrophies (LGMD) are genetically and clinically heterogeneous conditions. We investigated a large family with autosomal dominant transmission pattern, previously classified as LGMD1F and mapped to chromosome 7q32. Affected members are characterized by muscle weakness affecting earlier the pelvic girdle and the ileopsoas muscles. We sequenced the whole exome of four family members and identified a shared heterozygous frame-shift variant in the Transportin 3 (TNPO3) gene, encoding a member of the importin-β super-family. The TNPO3 gene is mapped within the LGMD1F critical interval and its 923-amino acid human gene product is also expressed in skeletal muscle. In addition, we identified an isolated case of LGMD with a new missense mutation in the same gene. We localized the mutant TNPO3 around the nucleus, but not inside. The involvement of gene related to the nuclear transport suggests a novel disease mechanism leading to muscular dystrophy.
doi:10.1371/journal.pone.0063536
PMCID: PMC3646821  PMID: 23667635
12.  Use of a Lower Dosage Liver-Detargeted AAV Vector to Prevent Hamster Muscular Dystrophy 
Human Gene Therapy  2013;24(4):424-430.
Abstract
The BIO14.6 hamster carries a mutation in the delta sarcoglycan gene causing muscular dystrophy and cardiomyopathy. The disease can be prevented by systemic delivery of delta sarcoglycan cDNA using adeno-associated viruses (AAVs). However, all AAVs also target the liver, raising concerns about their therapeutic efficacy in human applications. We compared the AAV2/8 with the chimeric AAV2/2i8, in which the 585-QQNTAP-590 motif of the AAV8 serotype was added to the heparan sulfate receptor footprint of the AAV2 strain. Both vectors carrying the human delta sarcoglycan cDNA were delivered into 24 14-day-old BIO14.6 hamsters. We followed transgene expression in muscle and liver for 7 months. We detected a sustained ectopic expression of delta sarcoglycan in the liver when using AAV2/8 but not AAV2/2i8. Genomic copies of AAV2/2i8 were not detectable in the liver, while at least 100-fold more copies of AAV2/8 were counted. In contrast, the hamster skeletal muscle expressed more delta sarcoglycan using AAV2/2i8 and were still healthy after 7 months at the lower dosage. We conclude that this chimeric vector is a robust option for safer and longer-term diseased muscle targeting.
Rotundo and colleagues generate a chimeric adeno-associated virus (AAV) 2/8 vector called AAV2/2i8, in which the 585-QQNTAP-590 motif of the AAV8 serotype is added to the heparan sulfate receptor footprint of the AAV2 strain. They show that muscle delivery of AAV2/2i8 works in the BIO14.6 hamster at lower dosages than AAV2/8 and that this occurs without any liver targeting, even within the context of intraperitoneal injections.
doi:10.1089/hum.2012.121
PMCID: PMC3631017  PMID: 23427808
13.  The ADAMTS18 gene is responsible for autosomal recessive early onset severe retinal dystrophy 
Background
Inherited retinal dystrophies, including Retinitis Pigmentosa and Leber Congenital Amaurosis among others, are a group of genetically heterogeneous disorders that lead to variable degrees of visual deficits. They can be caused by mutations in over 100 genes and there is evidence for the presence of as yet unidentified genes in a significant proportion of patients. We aimed at identifying a novel gene for an autosomal recessive form of early onset severe retinal dystrophy in a patient carrying no previously described mutations in known genes.
Methods
An integrated strategy including homozygosity mapping and whole exome sequencing was used to identify the responsible mutation. Functional tests were performed in the medaka fish (Oryzias latipes) model organism to gain further insight into the pathogenic role of the ADAMTS18 gene in eye and central nervous system (CNS) dysfunction.
Results
This study identified, in the analyzed patient, a homozygous missense mutation in the ADAMTS18 gene, which was recently linked to Knobloch syndrome, a rare developmental disorder that affects the eye and the occipital skull. In vivo gene knockdown performed in medaka fish confirmed both that the mutation has a pathogenic role and that the inactivation of this gene has a deleterious effect on photoreceptor cell function.
Conclusion
This study reveals that mutations in the ADAMTS18 gene can cause a broad phenotypic spectrum of eye disorders and contribute to shed further light on the complexity of retinal diseases.
doi:10.1186/1750-1172-8-16
PMCID: PMC3568033  PMID: 23356391
Inherited retinal dystrophies; ADAMTS18; Exome; Homozygosity mapping; Medaka fish; Knobloch syndrome
14.  Enhancer Chip: Detecting Human Copy Number Variations in Regulatory Elements 
PLoS ONE  2012;7(12):e52264.
Critical functional properties are embedded in the non-coding portion of the human genome. Recent successful studies have shown that variations in distant-acting gene enhancer sequences can contribute to disease. In fact, various disorders, such as thalassaemias, preaxial polydactyly or susceptibility to Hirschsprung’s disease, may be the result of rearrangements of enhancer elements. We have analyzed the distribution of enhancer loci in the genome and compared their localization to that of previously described copy-number variations (CNVs). These data suggest a negative selection of copy number variable enhancers. To identify CNVs covering enhancer elements, we have developed a simple and cost-effective test. Here we describe the gene selection, design strategy and experimental validation of a customized oligonucleotide Array-Based Comparative Genomic Hybridization (aCGH), designated Enhancer Chip. It has been designed to investigate CNVs, allowing the analysis of all the genome with a 300 Kb resolution and specific disease regions (telomeres, centromeres and selected disease loci) at a tenfold higher resolution. Moreover, this is the first aCGH able to test over 1,250 enhancers, in order to investigate their potential pathogenic role. Validation experiments have demonstrated that Enhancer Chip efficiently detects duplications and deletions covering enhancer loci, demonstrating that it is a powerful instrument to detect and characterize copy number variable enhancers.
doi:10.1371/journal.pone.0052264
PMCID: PMC3527541  PMID: 23284961
15.  Next generation sequencing (NGS) strategies for the genetic testing of myopathies 
Acta Myologica  2012;31(3):196-200.
Next generation sequencing (NGS) technologies offer the possibility to map entire genomes at affordable costs. This brings the genetic testing procedure to a higher level of complexity. The positive aspect is the ease to cope with the complex diagnosis of genetically heterogeneous disorders and to identify novel disease genes. Worries arise from the management of too many DNA variations with unpredictable meaning and incidental findings that can cause ethical and clinical dilemmas. The technology of enrichment makes possible to focus the sequencing to the exome or to a more specific DNA target. This is being used to provide insights into the genetics underlying Mendelian traits involved in myopathies and to set up cost-effective diagnostic tests. This huge potential of the NGS applications makes likely that these will soon become the first approach in genetic diagnostic laboratories.
PMCID: PMC3631804  PMID: 23620651
Next generation sequencing; NGS; neuromuscular disorders
16.  Improving the course of muscular dystrophy? 
Acta Myologica  2012;31(2):109.
PMCID: PMC3476863  PMID: 23097600
17.  Molecular Diagnosis of Usher Syndrome: Application of Two Different Next Generation Sequencing-Based Procedures 
PLoS ONE  2012;7(8):e43799.
Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified.
doi:10.1371/journal.pone.0043799
PMCID: PMC3430670  PMID: 22952768
18.  Diagnosis by protein analysis of dysferlinopathy in two patients mistaken as polymyositis 
Acta Myologica  2011;30(3):185-187.
We investigated the clinical and molecular pattern of two young men affected by dysferlinopathy, that was first diagnosed as polymyositis. We show that their symptoms and clinical course although progressive were peculiar, as well as their biopsy suggesting a subsequent analysis of dysferlin protein by western blotting. Molecular analysis of dysferlin gene revealed pathogenetic mutations in both cases.
In such cases a screening with Western blot followed by DNA analysis of dysferlin gene is therefore recommended. We present a diagnostic algorythm for patients with suspected myositis but presenting signs of disease progression and poor response to steroids.
PMCID: PMC3298102  PMID: 22616201
Dysferlin; LGMD2B; Western blot
19.  Worsening of Cardiomyopathy Using Deflazacort in an Animal Model Rescued by Gene Therapy 
PLoS ONE  2011;6(9):e24729.
We have previously demonstrated that gene therapy can rescue the phenotype and extend lifespan in the delta-sarcoglycan deficient cardiomyopathic hamster. In patients with similar genetic defects, steroids have been largely used to slow down disease progression. Aim of our study was to evaluate the combined effects of steroid treatment and gene therapy on cardiac function. We injected the human delta-sarcoglycan cDNA by adeno-associated virus (AAV) 2/8 by a single intraperitoneal injection into BIO14.6 Syrian hamsters at ten days of age to rescue the phenotype. We then treated the hamsters with deflazacort. Treatment was administered to half of the hamsters that had received the AAV and the other hamsters without AAV, as well as to normal hamsters. Both horizontal and vertical activities were greatly enhanced by deflazacort in all groups. As in previous experiments, the AAV treatment alone was able to preserve the ejection fraction (70±7% EF). However, the EF value declined (52±14%) with a combination of AAV and deflazacort. This was similar with all the other groups of affected animals. We confirm that gene therapy improves cardiac function in the BIO14.6 hamsters. Our results suggest that deflazacort is ineffective and may also have a negative impact on the cardiomyopathy rescue, possibly by boosting motor activity. This is unexpected and may have significance in terms of the lifestyle recommendations for patients.
doi:10.1371/journal.pone.0024729
PMCID: PMC3170375  PMID: 21931833
20.  Combined deficiency of alpha and epsilon sarcoglycan disrupts the cardiac dystrophin complex 
Human Molecular Genetics  2011;20(23):4644-4654.
Cardiomyopathy is a puzzling complication in addition to skeletal muscle pathology for patients with mutations in β-, γ- or δ-sarcoglycan (SG) genes. Patients with mutations in α-SG rarely have associated cardiomyopathy, or their cardiac pathology is very mild. We hypothesize that a fifth SG, ɛ-SG, may compensate for α-SG deficiency in the heart. To investigate the function of ɛ-SG in striated muscle, we generated an Sgce-null mouse and a Sgca-;Sgce-null mouse, which lacks both α- and ɛ-SGs. While Sgce-null mice showed a wild-type phenotype, with no signs of muscular dystrophy or heart disease, the Sgca-;Sgce-null mouse developed a progressive muscular dystrophy and a more anticipated and severe cardiomyopathy. It shows a complete loss of residual SGs and a strong reduction in both dystrophin and dystroglycan. Our data indicate that ɛ-SG is important in preventing cardiomyopathy in α-SG deficiency.
doi:10.1093/hmg/ddr398
PMCID: PMC3209833  PMID: 21890494
21.  Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations 
Dysferlin is a 237-kDa transmembrane protein involved in calcium-mediated sarcolemma resealing. Dysferlin gene mutations cause limb-girdle muscular dystrophy (LGMD) 2B, Miyoshi myopathy (MM) and distal myopathy of the anterior tibialis. Considering that a secondary Dysferlin reduction has also been described in other myopathies, our original goal was to identify cases with a Dysferlin deficiency without dysferlin gene mutations. The dysferlin gene is huge, composed of 55 exons that span 233 140 bp of genomic DNA. We performed a thorough mutation analysis in 65 LGMD/MM patients with ≤20% Dysferlin. The screening was exhaustive, as we sequenced both genomic DNA and cDNA. When required, we used other methods, including real-time PCR, long PCR and array CGH. In all patients, we were able to recognize the primary involvement of the dysferlin gene. We identified 38 novel mutation types. Some of these, such as a dysferlin gene duplication, could have been missed by conventional screening strategies. Nonsense-mediated mRNA decay was evident in six cases, in three of which both alleles were only detectable in the genomic DNA but not in the mRNA. Among a wide spectrum of novel gene defects, we found the first example of a ‘nonstop' mutation causing a dysferlinopathy. This study presents the first direct and conclusive evidence that an amount of Dysferlin ≤20% is pathogenic and always caused by primary dysferlin gene mutations. This demonstrates the high specificity of a marked reduction of Dysferlin on western blot and the value of a comprehensive molecular approach for LGMD2B/MM diagnosis.
doi:10.1038/ejhg.2011.70
PMCID: PMC3179367  PMID: 21522182
dysferlin; limb-girdle muscular dystrophy; Miyoshi myopathy; nonsense-mediated mRNA decay; comparative genomic hybridization
22.  Reverse Engineering Gene Network Identifies New Dysferlin-interacting Proteins* 
The Journal of Biological Chemistry  2010;286(7):5404-5413.
Dysferlin (DYSF) is a type II transmembrane protein implicated in surface membrane repair of muscle. Mutations in dysferlin lead to Limb Girdle Muscular Dystrophy 2B (LGMD2B), Miyoshi Myopathy (MM), and Distal Myopathy with Anterior Tibialis onset (DMAT). The DYSF protein complex is not well understood, and only a few protein-binding partners have been identified thus far. To increase the set of interacting protein partners for DYSF we recovered a list of predicted interacting protein through a systems biology approach. The predictions are part of a “reverse-engineered” genome-wide human gene regulatory network obtained from experimental data by computational analysis. The reverse-engineering algorithm behind the analysis relates genes to each other based on changes in their expression patterns. DYSF and AHNAK were used to query the system and extract lists of potential interacting proteins. Among the 32 predictions the two genes share, we validated the physical interaction between DYSF protein with moesin (MSN) and polymerase I and transcript release factor (PTRF) in mouse heart lysate, thus identifying two novel Dysferlin-interacting proteins. Our strategy could be useful to clarify Dysferlin function in intracellular vesicles and its implication in muscle membrane resealing.
doi:10.1074/jbc.M110.173559
PMCID: PMC3037653  PMID: 21119217
Caveolae; Genetic Diseases; Microarray; Muscular Dystrophy; Protein-Protein Interactions
23.  Disease Rescue and Increased Lifespan in a Model of Cardiomyopathy and Muscular Dystrophy by Combined AAV Treatments 
PLoS ONE  2009;4(3):e5051.
Background
The BIO14.6 hamster is an excellent animal model for inherited cardiomyopathy, because of its lethal and well-documented course, due to a spontaneous deletion of delta-sarcoglycan gene promoter and first exon. The muscle disease is progressive and average lifespan is 11 months, because heart slowly dilates towards heart failure.
Methodology/Principal Findings
Based on the ability of adeno-associated viral (AAV) vectors to transduce heart together with skeletal muscle following systemic administration, we delivered human delta-sarcoglycan cDNA into male BIO14.6 hamsters by testing different ages of injection, routes of administration and AAV serotypes. Body-wide restoration of delta-SG expression was associated with functional reconstitution of the sarcoglycan complex and with significant lowering of centralized nuclei and fibrosis in skeletal muscle. Motor ability and cardiac functions were completely rescued. However, BIO14.6 hamsters having less than 70% of fibers recovering sarcoglycan developed cardiomyopathy, even if the total rescued protein was normal. When we used serotype 2/8 in combination with serotype 2/1, lifespan was extended up to 22 months with sustained heart function improvement.
Conclusions/Significance
Our data support multiple systemic administrations of AAV as a general therapeutic strategy for clinical trials in cardiomyopathies and muscle disorders.
doi:10.1371/journal.pone.0005051
PMCID: PMC2660610  PMID: 19333401
24.  Interaction of Vault Particles with Estrogen Receptor in the MCF-7 Breast Cancer Cell  
The Journal of Cell Biology  1998;141(6):1301-1310.
A 104-kD protein was coimmunoprecipitated with the estrogen receptor from the flowtrough of a phosphocellulose chromatography of MCF-7 cell nuclear extract. mAbs to this protein identified several cDNA clones coding for the human 104-kD major vault protein. Vaults are large ribonucleoprotein particles of unknown function present in all eukaryotic cells. They have a complex morphology, including several small molecules of RNA, but a single protein species, the major vault protein, accounts for >70% of their mass. Their shape is reminiscent of the nucleopore central plug, but no proteins of known function have been described to interact with them. Western blot analysis of vaults purified on sucrose gradient showed the presence of estrogen receptor co-migrating with the vault peak. The AER317 antibody to estrogen receptor coimmunoprecipitated the major vault protein and the vault RNA also in the 20,000 g supernatant fraction. Reconstitution experiments of estrogen receptor fragments with the major vault protein mapped the site of the interaction between amino acids 241 and 280 of human estrogen receptor, where the nuclear localization signal sequences are located. Estradiol treatment of cells increased the amount of major vault protein present in the nuclear extract and coimmunoprecipitated with estrogen receptor, whereas the anti-estrogen ICI182,780 had no effect. The hormone-dependent interaction of vaults with estrogen receptor was reproducible in vitro and was prevented by sodium molybdate. Antibodies to progesterone and glucocorticoid receptors were able to coimmunoprecipitate the major vault protein. The association of nuclear receptors with vaults could be related to their intracellular traffic.
PMCID: PMC2132791  PMID: 9628887
25.  Unexpectedly Low Mutation Rates in Beta-Myosin Heavy Chain and Cardiac Myosin Binding Protein Genes in Italian Patients With Hypertrophic Cardiomyopathy 
Journal of Cellular Physiology  2011;226(11):2894-2900.
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere-related genes have been implicated in HCM etiology, those encoding β-myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fact, these account for around 50% of all cases related to sarcomeric gene mutations, which are collectively responsible for approximately 70% of all HCM cases. Here, we used denaturing high-performance liquid chromatography followed by bidirectional sequencing to screen the coding regions of MYH7 and MYBPC3 in a cohort (n = 125) of Italian patients presenting with HCM. We found 6 MHY7 mutations in 9/125 patients and 18 MYBPC3 mutations in 19/125 patients. Of the three novel MYH7 mutations found, two were missense, and one was a silent mutation; of the eight novel MYBPC3 mutations, one was a substitution, three were stop codons, and four were missense mutations. Thus, our cohort of Italian HCM patients did not harbor the high frequency of mutations usually found in MYH7 and MYBPC3. This finding, coupled to the clinical diversity of our cohort, emphasizes the complexity of HCM and the need for more inclusive investigative approaches in order to fully understand the pathogenesis of this disease. J. Cell. Physiol. 226: 2894–2900, 2011. © 2011 Wiley-Liss, Inc.
doi:10.1002/jcp.22636
PMCID: PMC3229838  PMID: 21302287

Results 1-25 (25)