Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Imaging for deep brain stimulation: The zona incerta at 7 Tesla 
World Journal of Radiology  2013;5(1):5-16.
AIM: To evaluate different promising magnetic resonance imaging (MRI) methods at 7.0 Tesla (T) for the pre-stereotactic visualization of the zona incerta (ZI).
METHODS: Two neuroradiologists qualitatively and quantitatively examined T2-turbo spin-echo (T2-TSE), T1-weighted gradient-echo, as well as FLASH2D-T2Star and susceptibility-weighted imaging (SWI) for the visualization of the ZI at 7.0 T MRI. Delineation and image quality for the ZI were independently examined using a 6-scale grading system. Inter-rater reliability using Cohen’s kappa coefficient (κ) were assessed. Contrast-to-noise ratios (CNR), and signal-to-noise ratios (SNR) for the ZI were calculated for all sequences. Differences in delineation, SNR, and CNR between the sequences were statistically assessed using a paired t-test. For the anatomic validation the coronal FLASH2D-T2Star images were co-registered with a stereotactic atlas (Schaltenbrand-Wahren).
RESULTS: The rostral part of the ZI (rZI) could easily be identified and was best and reliably visualized in the coronal FLASH2D-T2Star images. The caudal part was not definable in any of the sequences. No major artifacts in the rZI were observed in any of the scans. FLASH2D-T2Star and SWI imaging offered significant higher CNR values for the rZI compared to T2-TSE images (P > 0.05). The co-registration of the coronal FLASH2D-T2Star images with the stereotactic atlas schema (Schaltenbrand-Wahren) confirmed the correct localization of the ZI in all cases.
CONCLUSION: FLASH2D-T2Star imaging (particularly coronal view) provides the reliable and currently optimal visualization of the rZI at 7.0 T. These results can facilitate a better and more precise targeting of the caudal part of the ZI than ever before.
PMCID: PMC3596566  PMID: 23494089
Deep brain stimulation; Essential tremor; Magnetic resonance imaging; Parkinson’s disease; Zona incerta; 7 Tesla
2.  MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach 
In order to benefit from the highly conformal irradiation of tumors in ion radiotherapy, sophisticated treatment planning and simulation are required. The purpose of this study was to investigate the potential of MRI for ion radiotherapy treatment plan simulation and adaptation using a classification-based approach.
Firstly, a voxelwise tissue classification was applied to derive pseudo CT numbers from MR images using up to 8 contrasts. Appropriate MR sequences and parameters were evaluated in cross-validation studies of three phantoms. Secondly, ion radiotherapy treatment plans were optimized using both MRI-based pseudo CT and reference CT and recalculated on reference CT. Finally, a target shift was simulated and a treatment plan adapted to the shift was optimized on a pseudo CT and compared to reference CT optimizations without plan adaptation.
The derivation of pseudo CT values led to mean absolute errors in the range of 81 - 95 HU. Most significant deviations appeared at borders between air and different tissue classes and originated from partial volume effects. Simulations of ion radiotherapy treatment plans using pseudo CT for optimization revealed only small underdosages in distal regions of a target volume with deviations of the mean dose of PTV between 1.4 - 3.1% compared to reference CT optimizations. A plan adapted to the target volume shift and optimized on the pseudo CT exhibited a comparable target dose coverage as a non-adapted plan optimized on a reference CT.
We were able to show that a MRI-based derivation of pseudo CT values using a purely statistical classification approach is feasible although no physical relationship exists. Large errors appeared at compact bone classes and came from an imperfect distinction of bones and other tissue types in MRI. In simulations of treatment plans, it was demonstrated that these deviations are comparable to uncertainties of a target volume shift of 2 mm in two directions indicating that especially applications for adaptive ion radiotherapy are interesting.
PMCID: PMC3702461  PMID: 23497586
Magnetic resonance imaging; Ion radiotherapy; Ion beam therapy; Treatment planning; Simulation; Plan adaptation; Pseudo CT; Classification; Ultrashort echo time
3.  Rationale for treating oedema in Duchenne muscular dystrophy with eplerenone 
Acta Myologica  2012;31(1):31-39.
Recently we reported a cytoplasmic sodium overload to cause a severe osmotic oedema in Duchenne muscular dystrophy (DMD). Our results suggested that this dual overload of sodium ions and water precedes the dystrophic process and persists until fatty muscle degeneration is complete. The present paper addresses the questions as to whether these overloads are important for the pathogenesis of the disease, and if so, whether they can be treated. As a first step, we investigated the effects of various diuretic drugs on a cell model of DMD, i.e. rat diaphragm strips previously exposed to amphotericin B. We found that both carbonic anhydrase inhibitors and aldosterone antagonists were able to repolarise depolarised muscle fibres. Since carbonic anhydrase inhibitors are known to have acidifying effects and this might be detrimental to the ventilation of DMD patients, we mainly concentrated on the modern spironolactone derivative, eplerenone. This drug had a very high repolarizing power, the parameter considered by us as being most relevant for a beneficial effect. In a pilot study we administered this drug to a 22-yr-old female DMD patient who was bound to an electric wheelchair and has had no corticosteroid therapy before. Eplerenone decreased both cytoplasmic sodium and water overload and increased muscle strength and mobility. We conclude that eplerenone has beneficial effects on DMD muscle. In our opinion the cytoplasmic oedema is cytotoxic and should be treated before fatty degeneration takes place.
PMCID: PMC3440802  PMID: 22655515
Duchenne muscular dystrophy; eplerenone; cytotoxic oedema

Results 1-3 (3)