Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma 
TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6% ± 8.7%, respectively (p < 0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89% ± 2% vs. 57.4% ± 1.8% (p < 0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p < 0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5% ± 1.5% in lithium treated cells vs. 56.6 ± 3% (p < 0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33% ± 8% for lithium treated cells vs. 27% ± 3% for untreated controls (p = 0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-014-0174-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4297452  PMID: 25539912
2.  β-Catenin–regulated myeloid cell adhesion and migration determine wound healing 
The Journal of Clinical Investigation  2014;124(6):2599-2610.
A β-catenin/T cell factor–dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin–mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury.
PMCID: PMC4089463  PMID: 24837430
3.  Open reduction and internal fixation of unstable slipped capital femoral epiphysis by means of surgical dislocation does not decrease the rate of avascular necrosis: a preliminary study 
The treatment of unstable slipped capital femoral epiphysis (SCFE) remains controversial. Surgical dislocation and open reduction has the potential to significantly reduce the rate of avascular necrosis (AVN) by allowing direct preservation of the femoral head blood supply. The purpose of this study was to determine if open reduction of the unstable SCFE by means of surgical hip dislocation reduced the risk of AVN compared with closed reduction and percutaneous pinning.
We reviewed the medical records and radiographs of patients treated at our institution between the years 2000 and 2008. Sex, age, side of slip, precipitating event, pre- and post-operative anterior physeal separation (APS) and slip angle, slip severity, time between inciting event and surgical treatment, number of screws used, development of AVN, and need for subsequent surgery were evaluated. Statistical analysis was performed to compare risk factors and occurrence of AVN.
From 2004 to 2008, we treated 12 patients with unstable SCFEs: six had closed reduction and percutaneous pinning and six underwent open reduction by means of surgical hip dislocation. There were no statistically significant differences between the two groups regarding sex, age, slip angle, APS, time to surgery, and AVN rate. At follow-up, 4 (66.7 %) patients had AVN in the group which had open reduction, while 2 (33.3 %) patients had AVN in the group which underwent closed reduction. (p = 0.57).
Open reduction of the unstable SCFE by means of surgical dislocation of the hip does not decrease the rate of AVN when compared to closed reduction.
PMCID: PMC3425698  PMID: 23904893
Slipped capital femoral epiphysis; Closed reduction; Open reduction; Surgical dislocation of the hip; Percutaneous pinning; Avascular necrosis
4.  Targeting Stem Cell Behavior in Desmoid Tumors (Aggressive Fibromatosis) by Inhibiting Hedgehog Signaling1 
Neoplasia (New York, N.Y.)  2013;15(7):712-719.
Desmoid tumor (also called aggressive fibromatosis) is a lesion of mesenchymal origin that can occur as a sporadic tumor or a manifestation of the preneoplastic syndrome, familial adenomatous polyposis caused by a mutation in adenomatous polyposis coli (APC). This tumor type is characterized by the stabilization of β-catenin and activation of Tcf-mediated transcription. Cell transplantation data suggest that desmoid tumors are derived from mesenchymal progenitor cells (MSCs). As such, modulating cell signaling pathways that regulate MSC differentiation or proliferation, such as hedgehog (Hh) signaling, could alter the tumor phenotype. Here, we found that Hh signaling is activated in human and murine desmoid tumors. Inhibiting Hh signaling in human cell cultures decreased cell proliferation and β-catenin protein levels. Apc+/Apc1638N mice, which develop desmoid tumors, develop smaller and fewer tumors when Hh signaling was inhibited either genetically (by crossing Apc+/Apc1638N mice with mice lacking one copy of a Hh-activated transcription factor, Gli2+/- mice) or using a pharmacologic inhibitor. Both in mice and in human tumor cell cultures, β-catenin and Hh-mediated signaling positively regulate each other's activity. These data show that targeting a pathway that regulates MSC differentiation influences desmoid tumor behavior, providing functional evidence supporting the notion that these tumors are derived from mesenchymal progenitors. It also suggests Hh blockade as a therapeutic approach for this tumor type.
PMCID: PMC3689234  PMID: 23814483
5.  Development and Testing of a Multidimensional iPhone Pain Assessment Application for Adolescents with Cancer 
Pain is one of the most common and distressing symptoms reported by adolescents with cancer. Despite advancements in pain assessment and management research, pain due to cancer and/or its treatments continues to be poorly managed. Our research group has developed a native iPhone application (app) called Pain Squad to tackle the problem of poorly managed pain in the adolescent with cancer group. The app functions as an electronic pain diary and is unique in its ability to collect data on pain intensity, duration, location, and the impact pain has on an adolescent’s life (ie, relationships, school work, sleep, mood). It also evaluates medications and other physical and psychological pain management strategies used. Users are prompted twice daily at configurable times to complete 20 questions characterizing their pain and the app transmits results to a database for aggregate reporting through a Web interface. Each diary entry represents a pain case filed by an adolescent with cancer and a reward system (ie, moving up through law-enforcement team ranks, built-in videotaped acknowledgements from fictitious officers) encourages consistent use of the diary.
Our objective was to design, develop, and test the usability, feasibility, compliance, and satisfaction of a game-based smartphone pain assessment tool for adolescents with cancer.
We used both low- and high-fidelity qualitative usability testing with qualitative semi-structured, audio-taped interviews and iterative cycles to design and refine the iPhone based Pain Squad app. Qualitative thematic analysis of interviews using constant comparative methodology captured emergent themes related to app usability. Content validity was assessed using question importance-rating surveys completed by participants. Compliance and satisfaction data were collected following a 2-week feasibility trial where users were alarmed to record their pain twice daily on the app.
Thematic analysis of usability interviews showed the app to be appealing overall to adolescents. Analyses of both low- and high-fidelity testing resulted in minor revisions to the app to refine the theme and improve its usability. Adolescents resoundingly endorsed the game-based nature of the app and its virtual reward system. The importance of app pain diary questions was established by content validity analysis. Compliance with the app, assessed during feasibility testing, was high (mean 81%, SD 22%) and adolescents from this phase of the study found the app likeable, easy to use, and not bothersome to complete.
A multifaceted usability approach demonstrated how the Pain Squad app could be made more appealing to children and adolescents with cancer. The game-based nature and built-in reward system of the app was appealing to adolescents and may have resulted in the high compliance rates and satisfaction ratings observed during clinical feasibility testing.
PMCID: PMC3636147  PMID: 23475457
neoplasms; pain; child; adolescent; youth; cellular phone; game
6.  Cutaneous wound healing: recruiting developmental pathways for regeneration 
Cellular and Molecular Life Sciences  2012;70(12):2059-2081.
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.
PMCID: PMC3663196  PMID: 23052205
Wound healing; Regeneration; Skin; Wnt; β-Catenin; Transforming growth factor β (TGF-β); Notch; Hedgehog
7.  A New Cre Driver Mouse Line, Tcf21/Pod1-Cre, Targets Metanephric Mesenchyme 
PLoS ONE  2012;7(7):e40547.
Conditional gene targeting in mice has provided great insight into the role of gene function in kidney development and disease. Although a number of Cre-driver mouse strains already exist for the kidney, development of additional strains with unique expression patterns is needed. Here we report the generation and validation of a Tcf21/Pod1-Cre driver strain that expresses Cre recombinase throughout the condensing and stromal mesenchyme of developing kidneys and in their derivatives including epithelial components of the nephron and interstitial cells. To test the efficiency of this line, we crossed it to mice transgenic for either loss or gain of function β-catenin conditional alleles. Mice with deletion of β-catenin from Tcf21-expressing cells are born with hypoplastic kidneys, hydroureters and hydronephrosis. By contrast, Tcf21-Cre driven gain of function for β-catenin in mice results in fused midline kidneys and hypoplastic kidneys. Finally, we report the first renal mesenchymal deletion of Patched1 (Ptch1), the receptor for sonic hedgehog (Shh), which results in renal cysts demonstrating a functional role of Shh signaling pathway in renal cystogensis. In summary, we report the generation and validation of a new Cre driver strain that provides robust excision in metanephric mesenchyme.
PMCID: PMC3391250  PMID: 22792366
8.  T-Lymphocytes Enable Osteoblast Maturation via IL-17F during the Early Phase of Fracture Repair 
PLoS ONE  2012;7(6):e40044.
While it is well known that the presence of lymphocytes and cytokines are important for fracture healing, the exact role of the various cytokines expressed by cells of the immune system on osteoblast biology remains unclear. To study the role of inflammatory cytokines in fracture repair, we studied tibial bone healing in wild-type and Rag1−/− mice. Histological analysis, µCT stereology, biomechanical testing, calcein staining and quantitative RNA gene expression studies were performed on healing tibial fractures. These data provide support for Rag1−/− mice as a model of impaired fracture healing compared to wild-type. Moreover, the pro-inflammatory cytokine, IL-17F, was found to be a key mediator in the cellular response of the immune system in osteogenesis. In vitro studies showed that IL-17F alone stimulated osteoblast maturation. We propose a model in which the Th17 subset of T-lymphocytes produces IL-17F to stimulate bone healing. This is a pivotal link in advancing our current understanding of the molecular and cellular basis of fracture healing, which in turn may aid in optimizing fracture management and in the treatment of impaired bone healing.
PMCID: PMC3386936  PMID: 22768215
9.  A High Throughput Screen Identifies Nefopam as Targeting Cell Proliferation in β-Catenin Driven Neoplastic and Reactive Fibroproliferative Disorders 
PLoS ONE  2012;7(5):e37940.
Fibroproliferative disorders include neoplastic and reactive processes (e.g. desmoid tumor and hypertrophic scars). They are characterized by activation of β-catenin signaling, and effective pharmacologic approaches are lacking. Here we undertook a high throughput screen using human desmoid tumor cell cultures to identify agents that would inhibit cell viability in tumor cells but not normal fibroblasts. Agents were then tested in additional cell cultures for an effect on cell proliferation, apoptosis, and β-catenin protein level. Ultimately they were tested in Apc1638N mice, which develop desmoid tumors, as well as in wild type mice subjected to full thickness skin wounds. The screen identified Neofopam, as an agent that inhibited cell numbers to 42% of baseline in cell cultures from β-catenin driven fibroproliferative disorders. Nefopam decreased cell proliferation and β-catenin protein level to 50% of baseline in these same cell cultures. The half maximal effective concentration in-vitro was 0.5 uM and there was a plateau in the effect after 48 hours of treatment. Nefopam caused a 45% decline in tumor number, 33% decline in tumor volume, and a 40% decline in scar size when tested in mice. There was also a 50% decline in β-catenin level in-vivo. Nefopam targets β-catenin protein level in mesenchymal cells in-vitro and in-vivo, and may be an effective therapy for neoplastic and reactive processes driven by β-catenin mediated signaling.
PMCID: PMC3364163  PMID: 22666417
10.  The Canadian experience with long term deflazacort treatment in Duchenne muscular dystrophy 
Acta Myologica  2012;31(1):16-20.
Deflazacort is the most commonly prescribed corticosteroid for the treatment of Duchenne muscular dystrophy in Canada. We review the long term experience with deflazacort treatment at two centers in Canada; Montreal and Toronto. Deflazacort has benefitted both cohorts by prolonged ambulation, preserved cardiac and respiratory function, less scoliosis and improved survival. Common side effects in both cohorts include weight gain, decreased height and cataract formation. The Canadian experience supports the use of deflazacort in treating boys with Duchenne muscular dystrophy.
PMCID: PMC3440807  PMID: 22655512
Deflazacort; Duchenne Muscular Dystrophy; Canada
11.  Familial Adenomatous Polyposis-Associated Desmoids Display Significantly More Genetic Changes than Sporadic Desmoids 
PLoS ONE  2011;6(9):e24354.
Desmoid tumours (also called deep or aggressive fibromatoses) are potentially life-threatening fibromatous lesions. Hereditary desmoid tumours arise in individuals affected by either familial adenomatous polyposis (FAP) or hereditary desmoid disease (HDD) carrying germline mutations in APC. Most sporadic desmoids carry somatic mutations in CTNNB1. Previous studies identified losses on 5q and 6q, and gains on 8q and 20q as recurrent genetic changes in desmoids. However, virtually all genetic changes were derived from sporadic tumours. To investigate the somatic alterations in FAP-associated desmoids and to compare them with changes occurring in sporadic tumours, we analysed 17 FAP-associated and 38 sporadic desmoids by array comparative genomic hybridisation and multiple ligation-dependent probe amplification. Overall, the desmoids displayed only a limited number of genetic changes, occurring in 44% of cases. Recurrent gains at 8q (7%) and 20q (5%) were almost exclusively found in sporadic tumours. Recurrent losses were observed for a 700 kb region at 5q22.2, comprising the APC gene (11%), a 2 Mb region at 6p21.2-p21.1 (15%), and a relatively large region at 6q15-q23.3 (20%). The FAP-associated desmoids displayed a significantly higher frequency of copy number abnormalities (59%) than the sporadic tumours (37%). As predicted by the APC germline mutations among these patients, a high percentage (29%) of FAP-associated desmoids showed loss of the APC region at 5q22.2, which was infrequently (3%) seen among sporadic tumours. Our data suggest that loss of region 6q15-q16.2 is an important event in FAP-associated as well as sporadic desmoids, most likely of relevance for desmoid tumour progression.
PMCID: PMC3170296  PMID: 21931686
14.  Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery 
PLoS ONE  2010;5(9):e13053.
Lasers have in principle the capability to cut at the level of a single cell, the fundamental limit to minimally invasive procedures and restructuring biological tissues. To date, this limit has not been achieved due to collateral damage on the macroscale that arises from thermal and shock wave induced collateral damage of surrounding tissue. Here, we report on a novel concept using a specifically designed Picosecond IR Laser (PIRL) that selectively energizes water molecules in the tissue to drive ablation or cutting process faster than thermal exchange of energy and shock wave propagation, without plasma formation or ionizing radiation effects. The targeted laser process imparts the least amount of energy in the remaining tissue without any of the deleterious photochemical or photothermal effects that accompanies other laser wavelengths and pulse parameters. Full thickness incisional and excisional wounds were generated in CD1 mice using the Picosecond IR Laser, a conventional surgical laser (DELight Er:YAG) or mechanical surgical tools. Transmission and scanning electron microscopy showed that the PIRL laser produced minimal tissue ablation with less damage of surrounding tissues than wounds formed using the other modalities. The width of scars formed by wounds made by the PIRL laser were half that of the scars produced using either a conventional surgical laser or a scalpel. Aniline blue staining showed higher levels of collagen in the early stage of the wounds produced using the PIRL laser, suggesting that these wounds mature faster. There were more viable cells extracted from skin using the PIRL laser, suggesting less cellular damage. β-catenin and TGF-β signalling, which are activated during the proliferative phase of wound healing, and whose level of activation correlates with the size of wounds was lower in wounds generated by the PIRL system. Wounds created with the PIRL systsem also showed a lower rate of cell proliferation. Direct comparison of wound healing responses to a conventional surgical laser, and standard mechanical instruments shows far less damage and near absence of scar formation by using PIRL laser. This new laser source appears to have achieved the long held promise of lasers in minimally invasive surgery.
PMCID: PMC2946918  PMID: 20927391
15.  Beta-catenin Mediates Soft Tissue Contracture in Clubfoot 
The contracted tissues from clubfeet resemble tissues from other fibroproliferative disorders such as palmar fibromatosis. Beta-catenin-mediated signaling is a crucial pathway controlling the fibroproliferative response in many fibroproliferative disorders. To determine if beta-catenin signaling plays a role in clubfoot, contracted and less contracted tissues from clubfeet were studied using Western analysis to determine the protein level of beta-catenin. Primary cell cultures were established from these tissues, and they were treated with either lithium to increase beta-catenin or Dickkopf-1 to inhibit beta-catenin. RNA was extracted from the cells and analyzed to determine how beta-catenin regulates expression of Type III collagen, an extracellular matrix protein upregulated in contracted clubfoot tissue. There was a more than twofold increase in beta-catenin protein in the contracted tissues. Treatment with either lithium or Dickkopf-1 showed Type III collagen RNA expression positively correlated with the protein level of beta-catenin. These data support the concept that beta-catenin-mediated signaling plays an important role regulating contracture in clubfeet. Because pharmacologic agents are under development to block this signaling pathway, such drugs could be used in cases of severe stiffness to improve range of motion or to decrease the need for radical surgical approaches.
PMCID: PMC2664424  PMID: 19169765
17.  β-catenin and transforming growth factor β have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction 
BMC Cell Biology  2009;10:38.
β-catenin and transforming growth factor β signaling are activated in fibroblasts during wound healing. Both signaling pathways positively regulate fibroblast proliferation during this reparative process, and the effect of transforming growth factor β is partially mediated by β-catenin. Other cellular processes, such as cell motility and the induction of extracellular matrix contraction, also play important roles during wound repair. We examined the function of β-catenin and its interaction with transforming growth factor β in cell motility and the induction of collagen lattice contraction.
Floating three dimensional collagen lattices seeded with cells expressing conditional null and stabilized β-catenin alleles, showed a modest negative relationship between β-catenin level and the degree of lattice contraction. Transforming growth factor β had a more dramatic effect, positively regulating lattice contraction. In contrast to the situation in the regulation of cell proliferation, this effect of transforming growth factor β was not mediated by β-catenin. Treating wild-type cells or primary human fibroblasts with dickkopf-1, which inhibits β-catenin, or lithium, which stimulates β-catenin produced similar results. Scratch wound assays and Boyden chamber motility studies using these same cells found that β-catenin positively regulated cell motility, while transforming growth factor β had little effect.
This data demonstrates the complexity of the interaction of various signaling pathways in the regulation of cell behavior during wound repair. Cell motility and the induction of collagen lattice contraction are not always coupled, and are likely regulated by different intracellular mechanisms. There is unlikely to be a single signaling pathway that acts as master regulator of fibroblast behavior in wound repair. β-catenin plays dominant role regulating cell motility, while transforming growth factor β plays a dominant role regulating the induction of collagen lattice contraction.
PMCID: PMC2691404  PMID: 19432963
18.  Scoliosis: Review of diagnosis and treatment 
Paediatrics & Child Health  2007;12(9):771-776.
Scoliosis is a spinal deformity consisting of lateral curvature and rotation of the vertebrae. The causes of scoliosis vary and are classified broadly as congenital, neuromuscular, syndrome-related, idiopathic and spinal curvature due to secondary reasons. The majority of scoliosis cases encountered by the general practitioner will be idiopathic. The natural history relates to the etiology and age at presentation, and usually dictates the treatment. However, it is the patient’s history, physical examination and radiographs that are critical in the initial evaluation of scoliosis, and in determining which patients need additional considerations. Scoliosis with a primary diagnosis (nonidiopathic) must be recognized by the physician to identify the causes, which may require intervention. Patients with congenital scoliosis must be evaluated for cardiac and renal abnormalities. School screening for scoliosis is controversial and is falling out of favour. The treatment for idiopathic scoliosis is based on age, curve magnitude and risk of progression, and includes observation, orthotic management and surgical correction with fusion. A child should be referred to a specialist if the curve is greater than 10° in a patient younger than 10 years of age, is greater than 20° in a patient 10 years of age or older, has atypical features or is associated with back pain or neurological abnormalities.
PMCID: PMC2532872  PMID: 19030463
Back pain in scoliosis; Idiopathic scoliosis; Nonidiopathic scoliosis; Scoliosis screening
19.  Beta-Catenin Signaling Plays a Disparate Role in Different Phases of Fracture Repair: Implications for Therapy to Improve Bone Healing 
PLoS Medicine  2007;4(7):e249.
Delayed fracture healing causes substantial disability and usually requires additional surgical treatments. Pharmacologic management to improve fracture repair would substantially improve patient outcome. The signaling pathways regulating bone healing are beginning to be unraveled, and they provide clues into pharmacologic management. The β-catenin signaling pathway, which activates T cell factor (TCF)-dependent transcription, has emerged as a key regulator in embryonic skeletogenesis, positively regulating osteoblasts. However, its role in bone repair is unknown. The goal of this study was to explore the role of β-catenin signaling in bone repair.
Methods and Findings
Western blot analysis showed significant up-regulation of β-catenin during the bone healing process. Using a β-Gal activity assay to observe activation during healing of tibia fractures in a transgenic mouse model expressing a TCF reporter, we found that β-catenin-mediated, TCF-dependent transcription was activated in both bone and cartilage formation during fracture repair. Using reverse transcription-PCR, we observed that several WNT ligands were expressed during fracture repair. Treatment with DKK1 (an antagonist of WNT/β-catenin pathway) inhibited β-catenin signaling and the healing process, suggesting that WNT ligands regulate β-catenin. Healing was significantly repressed in mice conditionally expressing either null or stabilized β-catenin alleles induced by an adenovirus expressing Cre recombinase. Fracture repair was also inhibited in mice expressing osteoblast-specific β-catenin null alleles. In stark contrast, there was dramatically enhanced bone healing in mice expressing an activated form of β-catenin, whose expression was restricted to osteoblasts. Treating mice with lithium activated β-catenin in the healing fracture, but healing was enhanced only when treatment was started subsequent to the fracture.
These results demonstrate that β-catenin functions differently at different stages of fracture repair. In early stages, precise regulation of β-catenin is required for pluripotent mesenchymal cells to differentiate to either osteoblasts or chondrocytes. Once these undifferentiated cells have become committed to the osteoblast lineage, β-catenin positively regulates osteoblasts. This is a different function for β-catenin than has previously been reported during development. Activation of β-catenin by lithium treatment has potential to improve fracture healing, but only when utilized in later phases of repair, after mesenchymal cells have become committed to the osteoblast lineage.
In a study in mice Benjamin Alman and colleagues show that β-catenin functions differently in different stages of fracture repair; moreover, activation of β-catenin by lithium improves fracture healing when used in later phases of repair.
Editors' Summary
Most people break at least one bone during their life. If the damaged bone is immobilized with a plaster cast or with metal plates and pins, most fractures heal naturally and quickly. Soon after a bone is damaged, cells called pluripotent mesenchymal cells collect at the injury site. Here, they multiply and change (differentiate) into osteoblasts (cells that make bone) and chondrocytes (cells that make cartilage, the dense connective tissue that covers joints). Osteoblasts and chondrocytes mend the fracture by making new bone, a process called ossification. Bone healing involves two types of ossification. In intramembranous ossification, mesenchymal cells and osteoblast progenitor cells make bone directly, forming a hard “callus” within the fracture. In endochondral ossification, mesenchymal cells differentiate into chondrocytes and make cartilage at the fracture site, which osteoblasts turn into bone. Finally, the bone made by both types of ossification is remodeled so that it closely resembles the damaged bone's original shape and strength.
Why Was This Study Done?
Unfortunately, fractures do not always heal efficiently. If healing is delayed, additional surgery may be needed to repair the break. But surgery can be risky, so drug-based ways of encouraging bone repair would be very useful. To develop such treatments, researchers need to understand what controls the differentiation and activity of osteoblasts and chondrocytes during normal healing. In this study, the researchers have investigated the role of the β-catenin signaling pathway in bone repair. This pathway regulates bone formation during embryonic development, a process that closely resembles bone healing. β-catenin is usually degraded rapidly in cells. However, if a member of a particular family of proteins known as the WNT family binds to a WNT receptor on the surface of a cell, β-catenin moves into the cell's nucleus where it interacts with a protein called T cell factor (TCF). This interaction activates the transcription (the copying of DNA into messenger RNA, which is used to make proteins) of numerous genes and alters the behavior of the cell.
What Did the Researchers Do and Find?
The researchers first measured β-catenin levels in mouse and human bones. In both species, much more β-catenin was made in bones undergoing repair than in intact bones. Then they studied TCF reporter mice—animals in which TCF controls the expression of a marker gene. β-catenin-mediated TCF-dependent transcription, they report, was activated during both bone and cartilage formation after a fracture in these mice. Next, the researchers made mice that could be induced to express an inactive form of β-catenin or a stabilized (permanently active) form of β-catenin in all the cells in a bone fracture. Expression of inactive β-catenin slowed the rate of healing but, unexpectedly, so did expression of stabilized β-catenin. Osteoblast-specific expression of inactive β-catenin also delayed bone healing, whereas osteoblast-specific expression of stabilized β-catenin enhanced the process. Finally, treatment of wild-type mice with lithium (which prevents the degradation of β-catenin) enhanced bone healing if given after a fracture, but interfered with it if given before.
What Do These Findings Mean?
These findings indicate that β-catenin signaling (which, the researchers show, is mainly activated by WNT signaling) has different effects at different stages of bone repair. Early in the process, it controls the ratio of osteoblasts and chondrocytes made from the pluripotent mesenchymal cells. Consequently, too much or too little β-catenin interferes with bone healing at this stage. Later on, β-catenin promotes the differentiation of osteoblasts and enhances their ability to make bone, and so too little β-catenin at this stage prevents healing, whereas increased β-catenin levels stimulate healing. These findings need to be confirmed in people before testing agents that affect β-catenin signaling for their effects on human bone healing. Nevertheless, the researchers' final discovery that lithium improves bone healing if given at the right time is particularly encouraging; lithium is widely used to treat one form of depression so could be readily tested in clinical trials.
Additional Information.
Please access these Web sites via the online version of this summary at
MedlinePlus encyclopedia contains pages on broken bones and on bone fracture repair (in English and Spanish)
Wikipedia has pages on bone fracture and on bone healing (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The UK National Health Service Direct encyclopedia provides pages on broken bones
Animations of intramembranous and endochondral ossification are available from the Ministry of Advanced Education, Training and Technology, Province of British Columbia, Canada
The American Academy of Orthopedic Surgeons has an informative discussion of fractures
The Hospital for Sick Children in Toronto (where the authors of this study are affiliated) has a Web site called SickKids, which contains a page on child physiology, including diagrams of bone development
PMCID: PMC1950214  PMID: 17676991
20.  Human sterile alpha motif domain 9, a novel gene identified as down-regulated in aggressive fibromatosis, is absent in the mouse 
BMC Genomics  2007;8:92.
Neoplasia can be driven by mutations resulting in dysregulation of transcription. In the mesenchymal neoplasm, aggressive fibromatosis, subtractive hybridization identified sterile alpha motif domain 9 (SAMD9) as a substantially down regulated gene in neoplasia. SAMD9 was recently found to be mutated in normophosphatemic familial tumoral calcinosis. In this study, we studied the gene structure and function of SAMD9, and its paralogous gene, SAMD9L, and examined these in a variety of species.
SAMD9 is located on human chromosome 7q21.2 with a paralogous gene sterile alpha motif domain 9 like (SAMD9L) in the head-to-tail orientation. Although both genes are present in a variety of species, the orthologue for SAMD9 is lost in the mouse lineage due to a unique genomic rearrangement. Both SAMD9 and SAMD9L are ubiquitously expressed in human tissues. SAMD9 is expressed at a lower level in a variety of neoplasms associated with β-catenin stabilization, such as aggressive fibromatosis, breast, and colon cancers. SAMD9 and SAMD9L contain an amino-terminal SAM domain, but the remainder of the predicted protein structure does not exhibit substantial homology to other known protein motifs. The putative protein product of SAMD9 localizes to the cytoplasm. In vitro data shows that SAMD9 negatively regulates cell proliferation. Over expression of SAMD9 in the colon cancer cell line, SW480, reduces the volume of tumors formed when transplanted into immune-deficient mice.
SAMD9 and SAMD9L are a novel family of genes, which play a role regulating cell proliferation and suppressing the neoplastic phenotype. This is the first report as far as we know about a human gene that exists in rat, but is lost in mouse, due to a mouse specific rearrangement, resulting in the loss of the SAMD9 gene.
PMCID: PMC1855325  PMID: 17407603
21.  Elevated levels of β-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren's disease cells are regulated by tension in vitro 
Dupuytren's contracture or disease (DD) is a fibro-proliferative disease of the hand that results in the development of scar-like, collagen-rich disease cords within specific palmar fascia bands. Although the molecular pathology of DD is unknown, recent evidence suggests that β-catenin may play a role. In this study, collagen matrix cultures of primary disease fibroblasts show enhanced contraction and isometric tension-dependent changes in β-catenin and fibronectin levels.
Western blots of β-catenin and fibronectin levels were determined for control and disease primary cell cultures grown within stressed- and attached-collagen matrices. Collagen contraction was quantified, and immunocytochemistry analysis of filamentous actin performed.
Disease cells exhibited enhanced collagen contraction activity compared to control cells. Alterations in isometric tension of collagen matrices triggered dramatic changes in β-catenin and fibronectin levels, including a transient increase in β-catenin levels within disease cells, while fibronectin levels steadily decreased to levels below those seen in normal cell cultures. In contrast, both fibronectin and β-catenin levels increased in attached collagen-matrix cultures of disease cells, while control cultures showed only increases in fibronectin levels. Immunocytochemistry analysis also revealed extensive filamentous actin networks in disease cells, and enhanced attachment and spreading of disease cell in collagen matrices.
Three-dimensional collagen matrix cultures of primary disease cell lines are more contractile and express a more extensive filamentous actin network than patient-matched control cultures. The elevated levels of β-catenin and Fn seen in collagen matrix cultures of disease fibroblasts can be regulated by changes in isometric tension.
PMCID: PMC183833  PMID: 12866952

Results 1-21 (21)