Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Disseminated Strongyloides stercoralis Infection in HTLV-1-Associated Adult T-Cell Leukemia/Lymphoma 
Acta Haematologica  2011;126(2):63-67.
A 55-year-old woman with human T-cell lymphotropic virus type-1 (HTLV-1)-associated adult T-cell leukemia (ATL) and a history of previously treated Strongyloides stercoralis infection received anti-CD52 monoclonal antibody therapy with alemtuzumab on a clinical trial. After an initial response, she developed ocular involvement by ATL. Alemtuzumab was stopped and high-dose corticosteroid therapy was started to palliate her ocular symptoms. Ten days later, the patient developed diarrhea, vomiting, fever, cough, skin rash, and a deteriorating mental status. She was diagnosed with disseminated S. stercoralis. Corticosteroids were discontinued and the patient received anthelmintic therapy with ivermectin and albendazole with complete clinical recovery.
PMCID: PMC3080579  PMID: 21474923
Adult T-cell leukemia; Alemtuzumab; Corticosteroid; Disseminated Strongyloides; HTLV-1; Human T-cell lymphotropic virus type-1
2.  High-Throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID) 
BMC Bioinformatics  2005;6:168.
We previously developed GoMiner, an application that organizes lists of 'interesting' genes (for example, under-and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology. The original version of GoMiner was oriented toward visualization and interpretation of the results from a single microarray (or other high-throughput experimental platform), using a graphical user interface. Although that version can be used to examine the results from a number of microarrays one at a time, that is a rather tedious task, and original GoMiner includes no apparatus for obtaining a global picture of results from an experiment that consists of multiple microarrays. We wanted to provide a computational resource that automates the analysis of multiple microarrays and then integrates the results across all of them in useful exportable output files and visualizations.
We now introduce a new tool, High-Throughput GoMiner, that has those capabilities and a number of others: It (i) efficiently performs the computationally-intensive task of automated batch processing of an arbitrary number of microarrays, (ii) produces a human-or computer-readable report that rank-orders the multiple microarray results according to the number of significant GO categories, (iii) integrates the multiple microarray results by providing organized, global clustered image map visualizations of the relationships of significant GO categories, (iv) provides a fast form of 'false discovery rate' multiple comparisons calculation, and (v) provides annotations and visualizations for relating transcription factor binding sites to genes and GO categories.
High-Throughput GoMiner achieves the desired goal of providing a computational resource that automates the analysis of multiple microarrays and integrates results across all of the microarrays. For illustration, we show an application of this new tool to the interpretation of altered gene expression patterns in Common Variable Immune Deficiency (CVID). High-Throughput GoMiner will be useful in a wide range of applications, including the study of time-courses, evaluation of multiple drug treatments, comparison of multiple gene knock-outs or knock-downs, and screening of large numbers of chemical derivatives generated from a promising lead compound.
PMCID: PMC1190154  PMID: 15998470
3.  AKAP350 Interaction with cdc42 Interacting Protein 4 at the Golgi Apparatus 
Molecular Biology of the Cell  2004;15(6):2771-2781.
The A kinase anchoring protein 350 (AKAP350) is a multiply spliced type II protein kinase A anchoring protein that localizes to the centrosomes in most cells and to the Golgi apparatus in epithelial cells. In the present study, we sought to identify AKAP350 interacting proteins that could yield insights into AKAP350 function at the Golgi apparatus. Using yeast two-hybrid and pull-down assays, we found that AKAP350 interacts with a family of structurally related proteins, including FBP17, FBP17b, and cdc42 interacting protein 4 (CIP4). CIP4 interacts with the GTP-bound form of cdc42, with the Wiscott Aldrich Syndrome group of proteins, and with microtubules, and exerts regulatory effects on cytoskeleton and membrane trafficking. CIP4 is phosphorylated by protein kinase A in vitro, and elevation of intracellular cyclic AMP with forskolin stimulates in situ phosphorylation of CIP4. Our results indicate that CIP4 interacts with AKAP350 at the Golgi apparatus and that either disruption of this interaction by expressing the CIP4 binding domain in AKAP350, or reduction of AKAP350 expression by RNA interference leads to changes in Golgi structure. The results suggest that AKAP350 and CIP4 influence the maintenance of normal Golgi apparatus structure.
PMCID: PMC420101  PMID: 15047863

Results 1-3 (3)