PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (57)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Plasma microRNA profiles for bladder cancer detection 
Urologic oncology  2012;31(8):1701-1708.
Background
Bladder cancer (BC) is a burdensome disease with significant morbidity, mortality, and cost. The development of novel plasma-based biomarkers for BC diagnosis and surveillance could significantly improve clinical outcomes and decrease health expenditures. Plasma miRNAs are promising biomarkers that have yet to be rigorously investigated in BC.
Objective
To determine the feasibility and efficacy of detecting BC with plasma miRNA signatures.
Materials and methods
Plasma miRNA was isolated from 20 patients with bladder cancer and 18 noncancerous controls. Samples were analyzed with a miRNA array containing duplicate probes for each miRNA in the Sanger database. Logistic regression modeling was used to optimize diagnostic miRNA signatures to distinguish between muscle invasive BC (MIBC), non-muscle-invasive BC (NMIBC) and noncancerous controls.
Results
Seventy-nine differentially expressed plasma miRNAs (local false discovery rate [FDR] <0.5) in patients with or without BC were identified. Some diagnostically relevant miRNAs, such as miR-200b, were up-regulated in MIBC patients, whereas others, such as miR-92 and miR-33, were inversely correlated with advanced clinical stage, supporting the notion that miRNAs released in the circulation have a variety of cellular origins. Logistic regression modeling was able to predict diagnosis with 89% accuracy for detecting the presence or absence of BC, 92% accuracy for distinguishing invasive BC from other cases, 100% accuracy for distinguishing MIBC from controls, and 79% accuracy for three-way classification between MIBC, NIMBC, and controls.
Conclusions
This study provides preliminary data supporting the use of plasma miRNAs as a noninvasive means of BC detection. Future studies will be required to further specify the optimal plasma miRNA signature, and to apply these signatures to clinical scenarios, such as initial BC detection and BC surveillance.
doi:10.1016/j.urolonc.2012.06.010
PMCID: PMC5226073  PMID: 22863868
Bladder cancer; MicroRNAs; Plasma; Diagnostic
2.  An Overview of Chromatin-Regulating Proteins in Cells 
Current protein & peptide science  2016;17(5):401-410.
In eukaryotic cells, gene expressions on chromosome DNA are orchestrated by a dynamic chromosome structure state that is largely controlled by chromatin-regulating proteins, which regulate chromatin structures, release DNA from the nucleosome, and activate or suppress gene expression by modifying nucleosome histones or mobilizing DNA-histone structure. The two classes of chromatin- regulating proteins are 1) enzymes that modify histones through methylation, acetylation, phosphorylation, adenosine diphosphate–ribosylation, glycosylation, sumoylation, or ubiquitylation and 2) enzymes that remodel DNA-histone structure with energy from ATP hydrolysis. Chromatin-regulating proteins, which modulate DNA-histone interaction, change chromatin conformation, and increase or decrease the binding of functional DNA-regulating protein complexes, have major functions in nuclear processes, including gene transcription and DNA replication, repair, and recombination. This review provides a general overview of chromatin-regulating proteins, including their classification, molecular functions, and interactions with the nucleosome in eukaryotic cells.
PMCID: PMC4932839  PMID: 26796306
Chromosome; histone; histone modification; chromatin-regulating protein; gene transcription; DNA replication; DNA repair; DNA recombination
3.  The role of p19 and p21 H-Ras proteins and mutants in miRNA expression in cancer and a Costello syndrome cell model 
BMC Medical Genetics  2015;16:46.
Background
P19 H-Ras, a second product derived from the H-Ras gene by alternative splicing, induces a G1/S phase delay, thereby maintaining cells in a reversible quiescence state. When P21 H-Ras is mutated in tumour cells, the alternative protein P19 H-Ras is also mutated. The H-Ras mutation Q61L is frequently detected in different tumours, which acts as constitutive activator of Ras functions and is considered to be a strong activating mutant. Additionally, a rare congenital disorder named Costello Syndrome, is described as a H-Ras disorder in children, mainly due to mutation G12S in p19 and p21 H-Ras proteins, which is present in 90 % of the Costello Syndrome patients. Our aim is to better understand the role of p19 and p21 H-Ras proteins in the cancer and Costello Syndrome development, concerning the miRNAs expression.
Methods
Total miRNAs expression regulated by H-Ras proteins were first analyzed in human miRNA microarrays assays. Previously selected miRNAs, were further analyzed in developed cell lines containing H-Ras protein mutants, that included the G12S Costello Syndrome mutant, with PCR Real-Time Taq Man miRNA Assays primers.
Results
This study describes how p19 affects the RNA world and shows that: i) miR-342, miR-206, miR-330, miR-138 and miR-99b are upregulated by p19 but not by p19W164A mutant; ii) anti-miR-206 can restore the G2 phase in the presence of p19; iii) p19 and p21Q61L regulate their own alternative splicing; iv) miR-206 and miR-138 are differentially regulated by p19 and p21 H-Ras and v) P19G12S Costello mutants show a clear upregulation of miR-374, miR-126, miR-342, miR-330, miR-335 and let-7.
Conclusions
These results allow us to conclude that the H-Ras G12S mutation plays an important role in miRNA expression and open up a new line of study to understand the consequences of this mutation on Costello syndrome. Furthermore, they suggest that oncogenes may have a sufficiently important impact on miRNA expression to promote the development of numerous cancers.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-015-0184-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s12881-015-0184-z
PMCID: PMC4631104  PMID: 26138095
Alternative splicing; IDX; H-ras; p19; p21; miRNAs; Costello syndrome; H-ras mutants
5.  FOXP3-microRNA-146-NF-κB axis and therapy for precancerous lesions in prostate 
Cancer research  2015;75(8):1714-1724.
The tumor suppressive activity of FOXP3 has been observed in tumor initiation, but the underlying mechanism still remains largely unknown. Here, we identified a FOXP3-microRNA-146 (miR-146)-NF-κB axis in vitro and in vivo in prostate cancer cells. We observed that FOXP3 dramatically induced the expression of miR-146a/b, which contributed to transcriptional inhibition of IRAK1 and TRAF6, in prostate cancer cell lines. Tissue-specific deletion of Foxp3 in mouse prostate caused a significant reduction of miR-146a and upregulation of NF-κB activation. In addition, prostatic intraepithelial neoplasia lesions were observed in miR-146a mutant mice as well as in Foxp3 mutant mice. Notably, the NF-κB inhibitor bortezomib inhibited cell proliferation and induced apoptosis in prostate epithelial cells, attenuating prostatic intraepithelial neoplasia formation in Foxp3 mutant mice. Our data suggest that the FOXP3-miR-146-NF-κB axis has a functional role during tumor initiation in prostate cancer. Targeting the miR-146-NF-κB axis may provide a new therapeutic approach for prostate cancers with FOXP3 defects.
doi:10.1158/0008-5472.CAN-14-2109
PMCID: PMC4620056  PMID: 25712341
FOXP3; microRNA; NF-κB; prostate cancer; therapy
6.  FOXP3 controls an miR-146/NFκB negative feedback loop that inhibits apoptosis in breast cancer cells 
Cancer research  2015;75(8):1703-1713.
FOXP3 functions not only as the master regulator in regulatory T cells but also as an X-linked tumor suppressor. The tumor suppressive activity of FOXP3 has been observed in tumor initiation, but its role during tumor progression remains controversial. Moreover, the mechanism of FOXP3-mediated tumor suppressive activity remains largely unknown. Using chromatin immunoprecipitation sequencing, we identified a series of potential FOXP3-targeted microRNAs (miRs) in MCF7 cells. Notably, FOXP3 significantly induced the expression of miR-146a/b. In vitro, FOXP3-induced miR-146a/b prevented tumor cell proliferation and enhanced apoptosis. Functional analyses in vitro and in vivo revealed that FOXP3-induced miR-146a/b negatively regulate NF-κB activation by inhibiting the expression of IRAK1 and TRAF6. In chromatin immunoprecipitation assays, FOXP3 directly bound the promoter region of miR-146a but not of miR-146b, and FOXP3 interacted directly with NF-κB p65 to regulate an miR-146-NF-κB negative feedback regulation loop in normal breast epithelial and tumor cells, as demonstrated with luciferase reporter assays. Although FOXP3 significantly inhibited breast tumor growth and migration in vitro and metastasis in vivo, FOXP3-induced miR-146a/b contributed only to the inhibition of breast tumor growth. These data suggest that miR-146a/b contribute to FOXP3-mediated tumor suppression during tumor growth by triggering apoptosis. The identification of a FOXP3-miR-146-NF-κB axis provides an underlying mechanism for disruption of miR-146 family member expression and constitutive NF-κB activation in breast cancer cells. Linking the tumor suppressor function of FOXP3 to NF-κB activation reveals a potential therapeutic approach for cancers with FOXP3 defects.
doi:10.1158/0008-5472.CAN-14-2108
PMCID: PMC4706751  PMID: 25712342
FOXP3; microRNA; NF-κB; breast cancer
7.  Prognostic Significance of, and Gene and MicroRNA Expression Signatures Associated With, CEBPA Mutations in Cytogenetically Normal Acute Myeloid Leukemia With High-Risk Molecular Features: A Cancer and Leukemia Group B Study 
Journal of Clinical Oncology  2008;26(31):5078-5087.
Purpose
To evaluate the prognostic significance of CEBPA mutations in the context of established molecular markers in cytogenetically normal (CN) acute myeloid leukemia (AML) and gain biologic insights into leukemogenesis of the CN-AML molecular high-risk subset (FLT3 internal tandem duplication [ITD] positive and/or NPM1 wild type) that has a significantly higher incidence of CEBPA mutations than the molecular low-risk subset (FLT3-ITD negative and NPM1 mutated).
Patients and Methods
One hundred seventy-five adults age less than 60 years with untreated primary CN-AML were screened before treatment for CEBPA, FLT3, MLL, WT1, and NPM1 mutations and BAALC and ERG expression levels. Gene and microRNA (miRNA) expression profiles were obtained for the CN-AML molecular high-risk patients.
Results
CEBPA mutations predicted better event-free (P = .007), disease-free (P = .014), and overall survival (P < .001) independently of other molecular and clinical prognosticators. Among patients with CEBPA mutations, 91% were in the CN-AML molecular high-risk group. Within this group, CEBPA mutations predicted better event-free (P < .001), disease-free (P = .004), and overall survival (P = .009) independently of other molecular and clinical characteristics and were associated with unique gene and miRNA expression profiles. The major features of these profiles were upregulation of genes (eg, GATA1, ZFPM1, EPOR, and GFI1B) and miRNAs (ie, the miR-181 family) involved in erythroid differentiation and downregulation of homeobox genes.
Conclusion
Pretreatment testing for CEBPA mutations identifies CN-AML patients with different outcomes, particularly in the molecular high-risk group, thus improving molecular risk-based classification of this large cytogenetic subset of AML. The gene and miRNA expression profiling provided insights into leukemogenesis of the CN-AML molecular high-risk group, indicating that CEBPA mutations are associated with partial erythroid differentiation.
doi:10.1200/JCO.2008.17.5554
PMCID: PMC2652095  PMID: 18809607
8.  miRNA-548c: a specific signature in circulating PBMCs from dilated cardiomyopathy patients 
High fidelity genome-wide expression analysis has strengthened the idea that microRNA (miRNA) signatures in peripheral blood mononuclear cells (PBMCs) can be potentially used to predict the pathology when anatomical samples are inaccessible like heart. PBMCs from 48 non-failing controls and 44 patients with relatively stable chronic heart failure (ejection fraction of ≤ 40%) associated with dilated cardiomyopathy (DCM) were used for miRNA analysis. Genome-wide miRNA-microarray on PBMCs from chronic heart failure patients identified miRNA signature uniquely characterized by the downregulation of miRNA-548 family members. We have also independently validated downregulation of miRNA-548 family members (miRNA-548c & 548i) using real time-PCR in a large cohort of independent patient samples. Independent in silico Ingenuity Pathway Analysis (IPA) of miRNA-548 targets shows unique enrichment of signaling molecules and pathways associated with cardiovascular disease and hypertrophy. Consistent with specificity of miRNA changes with pathology, PBMCs from breast cancer patients showed no alterations in miRNA-548c expression compared to healthy controls. These studies suggest that miRNA-548 family signature in PBMCs can therefore be used as to detect early heart failure. Our studies show that cognate networking of predicted miRNA-548 targets in heart failure can be used as a powerful ancillary tool to predict the ongoing pathology.
doi:10.1016/j.yjmcc.2013.05.011
PMCID: PMC3735826  PMID: 23735785
Peripheral Blood Mononuclear Cells (PBMC); microRNA-548; dilated cardiomyopathy; canonical signaling networks; biomarker
9.  Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function 
Immunity  2015;42(3):457-470.
SUMMARY
Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions.
doi:10.1016/j.immuni.2015.02.006
PMCID: PMC4400836  PMID: 25769609
10.  An mTORC1-Mdm2-Drosha Axis for miRNA Biogenesis in Response to Glucose- and Nutrient-deprivation 
Molecular cell  2015;57(4):708-720.
mTOR senses nutrient and energy status to regulate cell survival and metabolism in response to environmental changes. Surprisingly, targeted mutation of Tsc1, a negative regulator of mTORC1, caused a broad reduction in miRNAs due to Drosha degradation. Conversely, targeted mutation of Raptor, an essential component of mTORC 1, increased miRNA biogenesis. mTOR activation increased expression of Mdm2, which is hereby identified as the necessary and sufficient ubiquitin E3 ligase for Drosha. Drosha was induced by nutrient and energy deprivation and conferred resistance to glucose deprivation. Using a high throughput screen of a miRNA library, we identified 4 miRNAs that were necessary and sufficient to protect cells against glucose deprivation-induced apoptosis. These miRNA was regulated by glucose through the mTORC1-MDM2- Drosha axis. Taken together, our data reveal an mTOR-Mdm2-Drosha pathway in mammalian cells that broadly regulates miRNA biogenesis as a response to alteration in cellular environment.
doi:10.1016/j.molcel.2014.12.034
PMCID: PMC4511160  PMID: 25639470
11.  HNF4α is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer 
Gut  2014;65(1):19-32.
Background
Worldwide, gastric cancer (GC) is the fourth most common malignancy and the most common cancer in East Asia. Development of targeted therapies for this disease has focused on a few known oncogenes but has had limited effects.
Objective
To determine oncogenic mechanisms and novel therapeutic targets specific for GC by identifying commonly dysregulated genes from the tumours of both Asian-Pacific and Caucasian patients.
Methods
We generated transcriptomic profiles of 22 Caucasian GC tumours and their matched non-cancerous samples and performed an integrative analysis across different GC gene expression datasets. We examined the inhibition of commonly overexpressed oncogenes and their constituent signalling pathways by RNAi and/or pharmacological inhibition.
Results
Hepatocyte nuclear factor-4α (HNF4α) upregulation was a key signalling event in gastric tumours from both Caucasian and Asian patients, and HNF4α antagonism was antineoplastic. Perturbation experiments in GC tumour cell lines and xenograft models further demonstrated that HNF4α is downregulated by AMPKα signalling and the AMPK agonist metformin; blockade of HNF4α activity resulted in cyclin downregulation, cell cycle arrest and tumour growth inhibition. HNF4α also regulated WNT signalling through its target gene WNT5A, a potential prognostic marker of diffuse type gastric tumours.
Conclusions
Our results indicate that HNF4α is a targetable oncoprotein in GC, is regulated by AMPK signalling through AMPKα and resides upstream of WNT signalling. HNF4α may regulate ‘metabolic switch’ characteristic of a general malignant phenotype and its target WNT5A has potential prognostic values. The AMPKα-HNF4α-WNT5A signalling cascade represents a potentially targetable pathway for drug development.
doi:10.1136/gutjnl-2014-307918
PMCID: PMC4717359  PMID: 25410163
GASTRIC CANCER; DRUG DEVELOPMENT; ONCOGENES; MOLECULAR BIOLOGY; GENE EXPRESSION
12.  Characterization of the Effect of the Histidine Kinase CovS on Response Regulator Phosphorylation in Group A Streptococcus 
Infection and Immunity  2015;83(3):1068-1077.
Two-component gene regulatory systems (TCSs) are a major mechanism by which bacteria respond to environmental stimuli and thus are critical to infectivity. For example, the control of virulence regulator/sensor kinase (CovRS) TCS is central to the virulence of the major human pathogen group A Streptococcus (GAS). Here, we used a combination of quantitative in vivo phosphorylation assays, isoallelic strains that varied by only a single amino acid in CovS, and transcriptome analyses to characterize the impact of CovS on CovR phosphorylation and GAS global gene expression. We discovered that CovS primarily serves to phosphorylate CovR, thereby resulting in the repression of virulence factor-encoding genes. However, a GAS strain selectively deficient in CovS phosphatase activity had a distinct transcriptome relative to that of its parental strain, indicating that both CovS kinase and phosphatase activities influence the CovR phosphorylation status. Surprisingly, compared to a serotype M3 strain, serotype M1 GAS strains had high levels of phosphorylated CovR, low transcript levels of CovR-repressed genes, and strikingly different responses to environmental cues. Moreover, the inactivation of CovS in the serotype M1 background resulted in a greater decrease in phosphorylated CovR levels and a greater increase in the transcript levels of CovR-repressed genes than did CovS inactivation in a serotype M3 strain. These data clarify the influence of CovS on the CovR phosphorylation status and provide insight into why serotype M1 GAS strains have high rates of spontaneous mutations in covS during invasive GAS infection, thus providing a link between TCS molecular function and the epidemiology of deadly bacterial infections.
doi:10.1128/IAI.02659-14
PMCID: PMC4333468  PMID: 25561708
13.  A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function 
Nature genetics  2009;41(3):365-370.
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting messenger RNA (mRNA) transcripts. Recently, a miRNA expression profile of human tumors has been characterized by an overall miRNA downregulation1–3. Explanations for this observation include a failure of miRNA post-transcriptional regulation4, transcriptional silencing associated with hypermethylation of CpG island promoters5–7 and miRNA transcriptional repression by oncogenic factors8. Another possibility is that the enzymes and cofactors involved in miRNA processing pathways may themselves be targets of genetic disruption, further enhancing cellular transformation9. However, no loss-of-function genetic alterations in the genes encoding these proteins have been reported. Here we have identified truncating mutations in TARBP2 (TAR RNA-binding protein 2), encoding an integral component of a DICER1-containing complex10,11, in sporadic and hereditary carcinomas with microsatellite instability12–14. The presence of TARBP2 frameshift mutations causes diminished TRBP protein expression and a defect in the processing of miRNAs. The reintroduction of TRBP in the deficient cells restores the efficient production of miRNAs and inhibits tumor growth. Most important, the TRBP impairment is associated with a destabilization of the DICER1 protein. These results provide, for a subset of human tumors, an explanation for the observed defects in the expression of mature miRNAs.
doi:10.1038/ng.317
PMCID: PMC4509508  PMID: 19219043
14.  Reproducibility of Variant Calls in Replicate Next Generation Sequencing Experiments 
PLoS ONE  2015;10(7):e0119230.
Nucleotide alterations detected by next generation sequencing are not always true biological changes but could represent sequencing errors. Even highly accurate methods can yield substantial error rates when applied to millions of nucleotides. In this study, we examined the reproducibility of nucleotide variant calls in replicate sequencing experiments of the same genomic DNA. We performed targeted sequencing of all known human protein kinase genes (kinome) (~3.2 Mb) using the SOLiD v4 platform. Seventeen breast cancer samples were sequenced in duplicate (n=14) or triplicate (n=3) to assess concordance of all calls and single nucleotide variant (SNV) calls. The concordance rates over the entire sequenced region were >99.99%, while the concordance rates for SNVs were 54.3-75.5%. There was substantial variation in basic sequencing metrics from experiment to experiment. The type of nucleotide substitution and genomic location of the variant had little impact on concordance but concordance increased with coverage level, variant allele count (VAC), variant allele frequency (VAF), variant allele quality and p-value of SNV-call. The most important determinants of concordance were VAC and VAF. Even using the highest stringency of QC metrics the reproducibility of SNV calls was around 80% suggesting that erroneous variant calling can be as high as 20-40% in a single experiment. The sequence data have been deposited into the European Genome-phenome Archive (EGA) with accession number EGAS00001000826.
doi:10.1371/journal.pone.0119230
PMCID: PMC4489803  PMID: 26136146
15.  The NFκB inhibitor, SN50, induces differentiation of glioma stem cells and suppresses their oncogenic phenotype 
Cancer Biology & Therapy  2014;15(5):602-611.
The malignant phenotype of glioblastoma multiforme (GBM) is believed to be largely driven by glioma stem-like cells (GSCs), and targeting GSCs is now considered a promising new approach to treatment of this devastating disease. Here, we show that SN50, a cell-permeable peptide inhibitor of NFκB, induced robust differentiation of human GSCs, causing loss of their oncogenic potential. We observed that following treatment of GSCs with SN50, their differentiated progeny cells showed significant decreases in their capability to form neuro-spheres and to invade in vitro and a reduction in their tumorigenicity in mouse xenograft models, but had increased sensitivity to the chemotherapeutic drug temozolomide and to radiation treatment. These results suggest that blocking the NFκB pathway may be explored as a useful mean to induce differentiation of GSCs, and provide another supportive evidence for the promise of differentiation therapy in treatment of malignant brain tumors.
doi:10.4161/cbt.28158
PMCID: PMC4026083  PMID: 24557012
NFκB inhibitor; SN50; brain tumor; differentiation; glioma stem cells
16.  MicroRNA expression profiling of male breast cancer 
Introduction
MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Their aberrant expression may be involved in human diseases, including cancer. To test the hypothesis that there is a specific miRNA expression signature which characterizes male breast cancers, we performed miRNA microarray analysis in a series of male breast cancers and compared them with cases of male gynecomastia and female breast cancers.
Methods
Paraffin blocks were obtained at the Department of Pathology of Thomas Jefferson University from 28 male patients including 23 breast cancers and five cases of male gynecomastia, and from 10 female ductal breast carcinomas. The RNA harvested was hybridized to miRNA microarrays (~1,100 miRNA probes, including 326 human and 249 mouse miRNA genes, spotted in duplicate). To further support the microarray data, an immunohistochemical analysis for two specific miRNA gene targets (HOXD10 and VEGF) was performed in a small series of male breast carcinoma and gynecomastia samples.
Results
We identified a male breast cancer miRNA signature composed of a large portion of underexpressed miRNAs. In particular, 17 miRNAs with increased expression and 26 miRNAs with decreased expression were identified in male breast cancer compared with gynecomastia. Among these miRNAs, some had well-characterized cancer development association and some showed a deregulation in cancer specimens similar to the one previously observed in the published signatures of female breast cancer. Comparing male with female breast cancer miRNA expression signatures, 17 significantly deregulated miRNAs were observed (four overexpressed and 13 underexpressed in male breast cancers). The HOXD10 and VEGF gene immunohistochemical expression significantly follows the corresponding miRNA deregulation.
Conclusions
Our results suggest that specific miRNAs may be directly involved in male breast cancer development and that they may represent a novel diagnostic tool in the characterization of specific cancer gene targets.
doi:10.1186/bcr2348
PMCID: PMC2750120  PMID: 19664288
17.  Downregulation of MicroRNA-107 in intestinal CD11c+ myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression 
European journal of immunology  2014;44(3):673-682.
Summary
Commensal flora plays an important role in the development of the mucosal immune system and in maintaining intestinal homeostasis. However, the mechanisms involved in regulation of host-microbiota interaction are still not completely understood. In this study, we examined how microbiota and intestinal inflammatory conditions regulate host microRNA expression and observed lower microRNA-107 (miR-107) expression in the inflamed intestines of colitic mice, compared with that in normal control mice. miR-107 was predominantly reduced in epithelial cells and CD11c+ myeloid cells including dendritic cells and macrophages in the inflamed intestines. We demonstrate that IL-6, IFN-γ and TNF-α downregulated, whereas TGF-β promoted, miR-107 expression. In addition, miR-107 expression was higher in the intestines of germ-free mice than in mice housed under specific pathogen-free conditions, and the presence of microbiota downregulated miR-107 expression in DCs and macrophages in a MyD88- and NF-κB-dependent manner. We determined that the ectopic expression of miR-107 specifically repressed the expression of IL-23p19, a key molecule in innate immune responses to commensal bacteria. We concluded that regulation of miR-107 by intestinal microbiota and pro-inflammatory cytokine serve as an important pathway for maintaining intestinal homeostasis.
doi:10.1002/eji.201343717
PMCID: PMC3959497  PMID: 24293139
IL-23p19; Inflammatory bowel disease (IBD); microRNAs; miR-107; Toll-like Receptor (TLR); colitis; DC; Microbiota
18.  Compatible solutes from hyperthermophiles improve the quality of DNA microarrays 
BMC Biotechnology  2007;7:82.
Background
DNA microarrays are among the most widely used technical platforms for DNA and RNA studies, and issues related to microarrays sensitivity and specificity are therefore of general importance in life sciences. Compatible solutes are derived from hyperthermophilic microorganisms and allow such microorganisms to survive in environmental and stressful conditions. Compatible solutes show stabilization effects towards biological macromolecules, including DNA.
Results
We report here that compatible solutes from hyperthermophiles increased the performance of the hybridization buffer for Affymetrix GeneChip® arrays. The experimental setup included independent hybridizations with constant RNA over a wide range of compatible solute concentrations. The dependence of array quality and compatible solute was assessed using specialized statistical tools provided by both the proprietary Affymetrix quality control system and the open source Bioconductor suite.
Conclusion
Low concentration (10 to 25 mM) of hydroxyectoine, potassium mannosylglycerate and potassium diglycerol phosphate in hybridization buffer positively affected hybridization parameters and enhanced microarrays outcome. This finding harbours a strong potential for the improvement of DNA microarray experiments.
doi:10.1186/1472-6750-7-82
PMCID: PMC2248183  PMID: 18036223
19.  mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer 
Molecular Cancer  2007;6:54.
Background
Colorectal cancer develops through two main genetic instability pathways characterized by distinct pathologic features and clinical outcome.
Results
We investigated colon cancer samples (23 characterized by microsatellite stability, MSS, and 16 by high microsatellite instability, MSI-H) for genome-wide expression of microRNA (miRNA) and mRNA. Based on combined miRNA and mRNA gene expression, a molecular signature consisting of twenty seven differentially expressed genes, inclusive of 8 miRNAs, could correctly distinguish MSI-H versus MSS colon cancer samples. Among the differentially expressed miRNAs, various members of the oncogenic miR-17-92 family were significantly up-regulated in MSS cancers. The majority of protein coding genes were also up-regulated in MSS cancers. Their functional classification revealed that they were most frequently associated with cell cycle, DNA replication, recombination, repair, gastrointestinal disease and immune response.
Conclusion
This is the first report that indicates the existence of differences in miRNA expression between MSS versus MSI-H colorectal cancers. In addition, the work suggests that the combination of mRNA/miRNA expression signatures may represent a general approach for improving bio-molecular classification of human cancer.
doi:10.1186/1476-4598-6-54
PMCID: PMC2048978  PMID: 17716371
20.  Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis 
The Lancet. Oncology  2009;11(2):136-146.
Summary
Background
Analyses of microRNA expression profiles have shown that many microRNAs are expressed aberrantly and correlate with tumorigenesis, progression, and prognosis of various haematological and solid tumours. We aimed to assess the relation between microRNA expression and progression and prognosis of gastric cancer.
Methods
353 gastric samples from two independent subsets of patients from Japan were analysed by microRNA microarray. MicroRNA expression patterns were compared between non-tumour mucosa and cancer samples, graded by diffuse and intestinal histological types and by progression-related factors (eg, depth of invasion, metastasis, and stage). Disease outcome was calculated by multivariable regression analysis to establish whether microRNAs are independent prognostic factors.
Findings
In 160 paired samples of non-tumour mucosa and cancer, 22 microRNAs were upregulated and 13 were downregulated in gastric cancer; 292 (83%) samples were distinguished correctly by this signature. The two histological subtypes of gastric cancer showed different microRNA signatures: eight microRNAs were upregulated in diffuse-type and four in intestinal-type cancer. In the progression-related signature, miR-125b, miR-199a, and miR-100 were the most important microRNAs involved. Low expression of let-7g (hazard ratio 2·6 [95% CI 1·3–4·9]) and miR-433 (2·1 [1·1–3·9]) and high expression of miR-214 (2·4 [1·2–4·5]) were associated with unfavourable outcome in overall survival independent of clinical covariates, including depth of invasion, lymph-node metastasis, and stage.
Interpretation
MicroRNAs are expressed differentially in gastric cancers, and histological subtypes are characterised by specific microRNA signatures. Unique microRNAs are associated with progression and prognosis of gastric cancer.
Funding
National Cancer Institute.
doi:10.1016/S1470-2045(09)70343-2
PMCID: PMC4299826  PMID: 20022810
21.  Global gene expression profiling of cells overexpressing SMC3 
Molecular Cancer  2005;4:34.
Background
The Structural Maintenance of Chromosome 3 protein (SMC3) plays an essential role during the sister chromatid separation, is involved in DNA repair and recombination and participates in microtubule-mediated intracellular transport. SMC3 is frequently elevated in human colon carcinoma and overexpression of the protein transforms murine NIH3T3 fibroblasts. In order to gain insight into the mechanism of SMC3-mediated tumorigenesis a gene expression profiling was performed on human 293 cells line stably overexpressing SMC3.
Results
Biotinylated complementary RNA (cRNA) was used for hybridization of a cDNAmicroarray chip harboring 18,861 65-mer oligos derived from the published dEST sequences. After filtering, the hybridization data were normalized and statistically analyzed. Sixty-five genes for which a putative function could be assigned displayed at least two-fold change in their expression level. Eighteen of the affected genes is either a transcriptional factor or is involved in DNA and chromatin related mechanisms whereas most of those involved in signal transduction are members or modulators of the ras-rho/GTPase and cAMP signaling pathways. In particular the expression of RhoB and CRE-BPa, two mediators of cellular transformation, was significantly enhanced. This association was confirmed by analyzing the RhoB and CRE-BPa transcript levels in cells transiently transfected with an SMC3 expression vector. Consistent with the idea that the activation of ras-rho/GTPase and cAMP pathways is relevant in the context of the cellular changes following SMC3 overexpression, gene transactivation through the related serum (SRE) and cAMP (CRE) cis-acting response elements was significantly increased.
Conclusion
We have documented a selective effect of the ectopic expression of SMC3 on a set of genes and transcriptional signaling pathways that are relevant for tumorigenesis. The results lead to postulate that RhoB and CRE-BPa two known oncogenic mediators whose expression is significantly increased following SMC3 overexpression play a significant role in mediating SMC3 tumorigenesis.
doi:10.1186/1476-4598-4-34
PMCID: PMC1242249  PMID: 16156898
22.  Coordinate control of cell cycle regulatory genes in zebrafish development tested by cyclin D1 knockdown with morpholino phosphorodiamidates and hydroxyprolyl-phosphono peptide nucleic acids 
Nucleic Acids Research  2005;33(15):4914-4921.
During early zebrafish (Danio rerio) development zygotic transcription does not begin until the mid-blastula transition (MBT) ∼3 h after fertilization. MBT demarcates transition from synchronous short cell cycles of S and M phases exclusively to full cycles encompassing G1 and G2 phases. Transcriptional profiling and RT–PCR analyses during these phases enabled us to determine that this shift corresponds to decreased transcript levels of S/M phase cell cycle control genes (e.g. ccna2, ccnb1, ccnb2 and ccne) and increased transcript levels of ccnd1, encoding cyclin D1, and orthologs of p21 (p21-like) and retinoblastoma (Rb-like 1). To investigate the regulation of this process further, the translation of ccnd1 mRNA, a G1/S checkpoint control element, was impaired by microinjection of ccnd1-specific morpholino phosphorodiamidate (MO) 20mer or hydroxyprolyl-phosphono peptide nucleic acid (HypNA-pPNA) 16mer antisense oligonucleotides. The resulting downregulation of cyclin D1 protein resulted in microophthalmia and microcephaly, but not lethality. The phenotypes were not seen with 3-mismatch MO 20mers or 1-mismatch HypNA-pPNA 16mers, and were rescued by an exogenous ccnd1 mRNA construct with five mismatches. Collectively, these results indicate that transcription of key molecular determinants of asynchronous cell cycle control in zebrafish embryos commences at MBT and that the reduction of cyclin D1 expression compromises zebrafish eye and head development.
doi:10.1093/nar/gki799
PMCID: PMC1199556  PMID: 16284195
23.  Comprehensive miRNA profiling of surgically staged endometrial cancer 
OBJECTIVE
We sought to determine a microRNA (miRNA) profile of surgically staged endometrial cancers.
STUDY DESIGN
RNA was extracted from archival primary endometrial cancers, and an miRNA profile was established using a microarray and confirmed with real-time polymerase chain reaction. Targets of differentially expressed miRNAs were explored using real-time polymerase chain reaction and Western blot in endometrial cell lines.
RESULTS
Endometrial cancer has an miRNA profile distinct from normal endometrium, even in patients with stage IA grade 1 tumors. This miRNA cancer profile was able to correctly assign a specimen as a malignancy with a sensitivity of 92%. Overexpressed miRNAs were predicted to target PTEN, and transfection of cell lines with these miRNAs led to down-regulation of PTEN expression. In advanced disease, an miRNA pattern distinct from early-stage disease was seen, and overexpression of mir-199c predicted improved cancer survival in this population.
CONCLUSION
Endometrial cancer has a distinct miRNA profile, and miRNAs can be used as a predictive biomarker.
doi:10.1016/j.ajog.2010.02.051
PMCID: PMC4278076  PMID: 20400061
biomarker; endometrial cancer; microRNA
24.  MicroRNA Profiles Discriminate among Colon Cancer Metastasis 
PLoS ONE  2014;9(6):e96670.
MicroRNAs are being exploited for diagnosis, prognosis and monitoring of cancer and other diseases. Their high tissue specificity and critical role in oncogenesis provide new biomarkers for the diagnosis and classification of cancer as well as predicting patients' outcomes. MicroRNAs signatures have been identified for many human tumors, including colorectal cancer (CRC). In most cases, metastatic disease is difficult to predict and to prevent with adequate therapies. The aim of our study was to identify a microRNA signature for metastatic CRC that could predict and differentiate metastatic target organ localization. Normal and cancer tissues of three different groups of CRC patients were analyzed. RNA microarray and TaqMan Array analysis were performed on 66 Italian patients with or without lymph nodes and/or liver recurrences. Data obtained with the two assays were analyzed separately and then intersected to identify a primary CRC metastatic signature. Five differentially expressed microRNAs (hsa-miR-21, -103, -93, -31 and -566) were validated by qRT-PCR on a second group of 16 American metastatic patients. In situ hybridization was performed on the 16 American patients as well as on three distinct commercial tissues microarray (TMA) containing normal adjacent colon, the primary adenocarcinoma, normal and metastatic lymph nodes and liver. Hsa-miRNA-21, -93, and -103 upregulation together with hsa-miR-566 downregulation defined the CRC metastatic signature, while in situ hybridization data identified a lymphonodal invasion profile. We provided the first microRNAs signature that could discriminate between colorectal recurrences to lymph nodes and liver and between colorectal liver metastasis and primary hepatic tumor.
doi:10.1371/journal.pone.0096670
PMCID: PMC4055753  PMID: 24921248
25.  EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 
Nature  2013;497(7449):383-387.
MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level1. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer2,3. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses4, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour5. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumour cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here we show that epidermal growth factor receptor (EGFR), which is the product of a well-characterized oncogene in human cancers, suppresses the maturation of specific tumour-suppressor-like miRNAs in response to hypoxic stress through phosphorylation of argonaute 2 (AGO2) at Tyr 393. The association between EGFR and AGO2 is enhanced by hypoxia, leading to elevated AGO2-Y393 phosphorylation, which in turn reduces the binding of Dicer to AGO2 and inhibits miRNA processing from precursor miRNAs to mature miRNAs. We also identify a long-loop structure in precursor miRNAs as a critical regulatory element in phospho-Y393-AGO2-mediated miRNA maturation. Furthermore, AGO2-Y393 phosphorylation mediates EGFR-enhanced cell survival and invasiveness under hypoxia, and correlates with poorer overall survival in breast cancer patients. Our study reveals a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification. These findings suggest that modulation of miRNA biogenesis is important for stress response in tumour cells and has potential clinical implications.
doi:10.1038/nature12080
PMCID: PMC3717558  PMID: 23636329

Results 1-25 (57)