PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Interdependence of Cardiac Iron and Calcium in a Murine Model of Iron Overload 
Iron cardiomyopathy in β-thalassemia major patients is associated with vitamin D deficiency. Stores of 25-OH-D3 are markedly reduced, while the active metabolite, 1-25-(OH)-D3, is normal or increased. Interestingly, the ratio of 25-OH-D3 to 1-25-(OH)-D3 (a surrogate for parathyroid hormone (PTH)) is the strongest predictor of cardiac iron. Increased PTH and 1-25-OH-D3 levels have been shown to up-regulate L-type voltage-gated calcium channels (LVGCC), the putative channel for cardiac iron uptake. Therefore, we postulate that vitamin D deficiency increases cardiac iron by altering LVGCC regulation. Hemojuvelin knockout mice were calcitriol treated, PTH treated, vitamin D-depleted, or untreated. Half of the animals in each group received the Ca2+-channel blocker verapamil. Mn2+ was infused to determine LVGCC activity. Hearts and livers were harvested for iron, calcium, and manganese measurements as well as histology. Cardiac iron did not differ amongst the treatment groups; however, liver iron was increased in vitamin D-depleted animals (p<0.0003). Cardiac iron levels did not correlate with manganese uptake, but were proportional to cardiac calcium levels (r2 = 0.6, p < 0.0001). Verapamil treatment reduced both cardiac (p <0.02) and hepatic (p < 0.003) iron levels significantly by 34% and 28%. The association between cardiac iron and calcium levels was maintained after verapamil treatment (r2 = 0.3, p < 0.008). Vitamin D-depletion is associated with an increase in liver, but not cardiac, iron accumulation. Cardiac iron uptake was strongly correlated with cardiac calcium stores and was significantly attenuated by verapamil, suggesting that cardiac calcium and iron are related.
doi:10.1016/j.trsl.2010.11.002
PMCID: PMC3073567  PMID: 21256461
b-thalassemia; vitamin D; iron overload; hemojuvelin
2.  Spleen R2 and R2* in Iron-Overloaded Patients With Sickle Cell Disease and Thalassemia Major 
Purpose
To evaluate the magnetic properties of the spleen in chronically transfused, iron-overloaded patients with sickle cell disease (SCD) and thalassemia major (TM) and to compare splenic iron burdens to those in the liver, heart, pancreas, and kidneys.
Materials and Methods
A retrospective analysis of 63 TM and 46 SCD patients was performed. Spleen R2 and R2* values were calculated from spin-echo and gradient-echo images collected between April 2004 and September 2007.
Results
The spleen showed a different R2–R2* relationship than that previously established for the liver. At high iron concentrations (R2* > 300 Hz), spleen R2 was lower than predicted for liver. The proportion of splenic to hepatic iron content was greater in SCD patients compared with TM patients (23.8% vs. 13.8%). A weak association was found between splenic and liver iron—this association was stronger in SCD patients. Little correlation was found between splenic iron and extrahepatic R2* values.
Conclusion
For spleen and liver tissue with the same R2* value, splenic R2 was significantly lower than hepatic R2, particularly for R2* > ≈300 Hz. Splenic iron levels have little predictive value for R2* values of heart, pancreas, and kidney.
doi:10.1002/jmri.21666
PMCID: PMC2906451  PMID: 19161188
spleen; sickle cell; thalassemia; MRI; iron
3.  Safety and Efficacy of Combined Chelation Therapy with Deferasirox and Deferoxamine in a Gerbil Model of Iron Overload 
Acta haematologica  2008;120(2):123-128.
Introduction
Combined therapy with deferoxamine (DFO) and deferasirox (DFX) may be performed empirically when DFX monotherapy fails. Given the lack of published data on this therapy, the study goal was to assess the safety and efficacy of combined DFO/DFX therapy in a gerbil model.
Methods
Thirty-two female Mongolian gerbils 8–10 weeks old were divided into 4 groups (sham chelated, DFO, DFX, DFO/DFX). Each received 10 weekly injections of 200 mg/kg iron dextran prior to initiation of 12 weeks of chelation. Experimental endpoints were heart and liver weights, iron concentration and histology.
Results
In the heart, there was no significant difference among the treatment groups for wet-to-dry ratio, iron concentration and iron content. DFX-treated animals exhibited lower organ weights relative to sham-chelated animals (less iron-mediated hypertrophy). DFO-treated organs did not differ from sham-chelated organs in any aspects. DFX significantly cleared hepatic iron. No additive effects were observed in the organs of DFO/DFX-treated animals.
Conclusions
Combined DFO/DFX therapy produced no detectable additive effect above DFX monotherapy in either the liver or heart, suggesting competition with spontaneous iron elimination mechanisms for chelatable iron. Combined therapy was well tolerated, but its efficacy could not be proven due to limitations in the animal model.
doi:10.1159/000174757
PMCID: PMC2884393  PMID: 19018129
Deferasirox; Deferoxamine; Iron overload

Results 1-3 (3)