PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A Drug Screening Method Based on the Autophagy Pathway and Studies of the Mechanism of Evodiamine against Influenza A Virus 
PLoS ONE  2012;7(8):e42706.
In this research, we have established a drug screening method based on the autophagy signal pathway using the bimolecular fluorescence complementation - fluorescence resonance energy transfer (BiFC-FRET) technique to develop novel anti-influenza A virus (IAV) drugs. We selected Evodia rutaecarpa Benth out of 83 examples of traditional Chinese medicine and explored the mechanisms of evodiamine, the major active component of Evodia rutaecarpa Benth, on anti-IAV activity. Our results showed that evodiamine could significantly inhibit IAV replication, as determined by a plaque inhibition assay, an IAV vRNA promoter luciferase reporter assay and the Sulforhodamine B method using cytopathic effect (CPE) reduction. Additionally, evodiamine could significantly inhibit the accumulation of LC3-II and p62, and the dot-like aggregation of EGFP-LC3. This compound also inhibited the formation of the Atg5-Atg12/Atg16 heterotrimer, the expressions of Atg5, Atg7 and Atg12, and the cytokine release of TNF-α, IL-1β, IL-6 and IL-8 after IAV infection. Evodiamine inhibited IAV-induced autophagy was also dependent on its action on the AMPK/TSC2/mTOR signal pathway. In conclusion, we have established a new drug screening method, and selected evodiamine as a promising anti-IAV compound.
doi:10.1371/journal.pone.0042706
PMCID: PMC3416798  PMID: 22900043
2.  Whole-exome sequencing identifies mutated PCK2 and HUWE1 associated with carcinoma cell proliferation in a hepatocellular carcinoma patient 
Oncology Letters  2012;4(4):847-851.
Hepatocellular carcinoma (HCC) is diagnosed in more than half a million individuals worldwide every year. It is often invasive and metastatic, resulting in a poor prognosis. Our knowledge of the genomic alterations implicated in HCC initiation and progression is fragmentary, and few molecular alterations unique to HCC are known. We performed whole-exome sequencing for a pleomorphic cell-type HCC tissue and matched normal tissue, and uncovered seven non-synonymous somatic variants in SPATA21, PPCS, CDH12, OR1L3, PCK2, HUWE1 and PHF16. These variants were validated by PCR and sequencing, with the exception of that in PPCS. We further performed a bioinformatics analysis of the six validated variants. The results suggested that the function of the proteins of the three mutated genes, PCK2, HUWE1 and PHF16, may be changed significantly. Among these genes, PCK2, within the insulin signaling pathway, and HUWE1, within the ubiquitin-mediated proteolysis pathway, may be essential for cell proliferation. These pathways are known to be important for hepatocarcinogenesis. Hence, we suggest that PCK2 and HUWE1 are associated with carcinoma cell proliferation in HCC.
doi:10.3892/ol.2012.825
PMCID: PMC3506710  PMID: 23205112
hepatocellular carcinoma; exome sequencing; somatic mutation
3.  A model for 3-methyladenine recognition by 3-methyladenine DNA glycosylase I (TAG) from Staphylococcus aureus  
The structure of 3-methyladenine DNA glycosylase I in complex with 3-methyladenine is reported.
The removal of chemically damaged DNA bases such as 3-methyladenine (3-­MeA) is an essential process in all living organisms and is catalyzed by the enzyme 3-MeA DNA glycosylase I. A key question is how the enzyme selectively recognizes the alkylated 3-MeA over the much more abundant adenine. The crystal structures of native and Y16F-mutant 3-MeA DNA glycosylase I from Staphylococcus aureus in complex with 3-MeA are reported to 1.8 and 2.2 Å resolution, respectively. Isothermal titration calorimetry shows that protonation of 3-MeA decreases its binding affinity, confirming previous fluorescence studies that show that charge–charge recognition is not critical for the selection of 3-MeA over adenine. It is hypothesized that the hydrogen-bonding pattern of Glu38 and Tyr16 of 3-MeA DNA glycosylase I with a particular tautomer unique to 3-MeA contributes to recognition and selection.
doi:10.1107/S1744309112016363
PMCID: PMC3370894  PMID: 22684054
3-methyladenine DNA glycosylase I; fluorescence measurements; ITC; DNA repair; recognition
4.  Heterologous SH3-p85β inhibits influenza A virus replication 
Virology Journal  2010;7:170.
Phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway can support the replication of influenza A virus through binding of viral NS1 protein to the Src homology 3 (SH3) domain of p85β regulatory subunit of PI3K. Here we investigated the effect of heterologously overexpressed SH3 on the replication of different influenza A virus subtypes/strains, and on the phosphorylation of Akt in the virus-infected cells. We found that heterologous SH3 reduced replication of influenza A viruses at varying degrees in a subtype/strain-dependent manner and SH3 overexpression reduced the induction of the phosphorylation of Akt in the cells infected with PR8(H1N1) and ST364(H3N2), but not with ST1233(H1N1), Ph2246(H9N2), and Qa199(H9N2). Our results suggest that interference with the NS1-p85β interaction by heterologous SH3 can be served as a useful antiviral strategy against influenza A virus infection.
doi:10.1186/1743-422X-7-170
PMCID: PMC2917421  PMID: 20653952
5.  The Scottish Structural Proteomics Facility: targets, methods and outputs 
The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.
Electronic supplementary material
The online version of this article (doi:10.1007/s10969-010-9090-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s10969-010-9090-y
PMCID: PMC2883930  PMID: 20419351
High-throughput; Protein crystallography; Structural proteomics; SSPF

Results 1-5 (5)