Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Comparing structural fingerprints using a literature-based similarity benchmark 
The concept of molecular similarity is one of the central ideas in cheminformatics, despite the fact that it is ill-defined and rather difficult to assess objectively. Here we propose a practical definition of molecular similarity in the context of drug discovery: molecules A and B are similar if a medicinal chemist would be likely to synthesise and test them around the same time as part of the same medicinal chemistry program. The attraction of such a definition is that it matches one of the key uses of similarity measures in early-stage drug discovery. If we make the assumption that molecules in the same compound activity table in a medicinal chemistry paper were considered similar by the authors of the paper, we can create a dataset of similar molecules from the medicinal chemistry literature. Furthermore, molecules with decreasing levels of similarity to a reference can be found by either ordering molecules in an activity table by their activity, or by considering activity tables in different papers which have at least one molecule in common.
Using this procedure with activity data from ChEMBL, we have created two benchmark datasets for structural similarity that can be used to guide the development of improved measures. Compared to similar results from a virtual screen, these benchmarks are an order of magnitude more sensitive to differences between fingerprints both because of their size and because they avoid loss of statistical power due to the use of mean scores or ranks. We measure the performance of 28 different fingerprints on the benchmark sets and compare the results to those from the Riniker and Landrum (J Cheminf 5:26, 2013. doi:10.1186/1758-2946-5-26) ligand-based virtual screening benchmark.
Extended-connectivity fingerprints of diameter 4 and 6 are among the best performing fingerprints when ranking diverse structures by similarity, as is the topological torsion fingerprint. However, when ranking very close analogues, the atom pair fingerprint outperforms the others tested. When ranking diverse structures or carrying out a virtual screen, we find that the performance of the ECFP fingerprints significantly improves if the bit-vector length is increased from 1024 to 16,384.Graphical abstractAn example series from one of the benchmark datasets. Each fingerprint is assessed on its ability to reproduce a specific series order.
Electronic supplementary material
The online version of this article (doi:10.1186/s13321-016-0148-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4932683  PMID: 27382417
Similarity searching; Molecular fingerprints; Structural similarity; Similarity benchmark
2.  Efficient chemical-disease identification and relationship extraction using Wikipedia to improve recall 
Awareness of the adverse effects of chemicals is important in biomedical research and healthcare. Text mining can allow timely and low-cost extraction of this knowledge from the biomedical literature. We extended our text mining solution, LeadMine, to identify diseases and chemical-induced disease relationships (CIDs). LeadMine is a dictionary/grammar-based entity recognizer and was used to recognize and normalize both chemicals and diseases to Medical Subject Headings (MeSH) IDs. The disease lexicon was obtained from three sources: MeSH, the Disease Ontology and Wikipedia. The Wikipedia dictionary was derived from pages with a disease/symptom box, or those where the page title appeared in the lexicon. Composite entities (e.g. heart and lung disease) were detected and mapped to their composite MeSH IDs. For CIDs, we developed a simple pattern-based system to find relationships within the same sentence. Our system was evaluated in the BioCreative V Chemical–Disease Relation task and achieved very good results for both disease concept ID recognition (F1-score: 86.12%) and CIDs (F1-score: 52.20%) on the test set. As our system was over an order of magnitude faster than other solutions evaluated on the task, we were able to apply the same system to the entirety of MEDLINE allowing us to extract a collection of over 250 000 distinct CIDs.
PMCID: PMC4825350  PMID: 27060160
3.  The CHEMDNER corpus of chemicals and drugs and its annotation principles 
Journal of Cheminformatics  2015;7(Suppl 1):S2.
The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at:
PMCID: PMC4331692  PMID: 25810773
named entity recognition; BioCreative; text mining; chemical entity recognition; machine learning; chemical indexing; ChemNLP
4.  LeadMine: a grammar and dictionary driven approach to entity recognition 
Journal of Cheminformatics  2015;7(Suppl 1):S5.
Chemical entity recognition has traditionally been performed by machine learning approaches. Here we describe an approach using grammars and dictionaries. This approach has the advantage that the entities found can be directly related to a given grammar or dictionary, which allows the type of an entity to be known and, if an entity is misannotated, indicates which resource should be corrected. As recognition is driven by what is expected, if spelling errors occur, they can be corrected. Correcting such errors is highly useful when attempting to lookup an entity in a database or, in the case of chemical names, converting them to structures.
Our system uses a mixture of expertly curated grammars and dictionaries, as well as dictionaries automatically derived from public resources. We show that the heuristics developed to filter our dictionary of trivial chemical names (from PubChem) yields a better performing dictionary than the previously published Jochem dictionary. Our final system performs post-processing steps to modify the boundaries of entities and to detect abbreviations. These steps are shown to significantly improve performance (2.6% and 4.0% F1-score respectively). Our complete system, with incremental post-BioCreative workshop improvements, achieves 89.9% precision and 85.4% recall (87.6% F1-score) on the CHEMDNER test set.
Grammar and dictionary approaches can produce results at least as good as the current state of the art in machine learning approaches. While machine learning approaches are commonly thought of as "black box" systems, our approach directly links the output entities to the input dictionaries and grammars. Our approach also allows correction of errors in detected entities, which can assist with entity resolution.
PMCID: PMC4331695  PMID: 25810776
LeadMine; grammars; dictionaries; chemical entity recognition; CHEMDNER; Biocreative IV
5.  Annotated Chemical Patent Corpus: A Gold Standard for Text Mining 
PLoS ONE  2014;9(9):e107477.
Exploring the chemical and biological space covered by patent applications is crucial in early-stage medicinal chemistry activities. Patent analysis can provide understanding of compound prior art, novelty checking, validation of biological assays, and identification of new starting points for chemical exploration. Extracting chemical and biological entities from patents through manual extraction by expert curators can take substantial amount of time and resources. Text mining methods can help to ease this process. To validate the performance of such methods, a manually annotated patent corpus is essential. In this study we have produced a large gold standard chemical patent corpus. We developed annotation guidelines and selected 200 full patents from the World Intellectual Property Organization, United States Patent and Trademark Office, and European Patent Office. The patents were pre-annotated automatically and made available to four independent annotator groups each consisting of two to ten annotators. The annotators marked chemicals in different subclasses, diseases, targets, and modes of action. Spelling mistakes and spurious line break due to optical character recognition errors were also annotated. A subset of 47 patents was annotated by at least three annotator groups, from which harmonized annotations and inter-annotator agreement scores were derived. One group annotated the full set. The patent corpus includes 400,125 annotations for the full set and 36,537 annotations for the harmonized set. All patents and annotated entities are publicly available at
PMCID: PMC4182036  PMID: 25268232
6.  Using Matched Molecular Series as a Predictive Tool To Optimize Biological Activity 
Journal of Medicinal Chemistry  2014;57(6):2704-2713.
A matched molecular series is the general form of a matched molecular pair and refers to a set of two or more molecules with the same scaffold but different R groups at the same position. We describe Matsy, a knowledge-based method that uses matched series to predict R groups likely to improve activity given an observed activity order for some R groups. We compare the Matsy predictions based on activity data from ChEMBLdb to the recommendations of the Topliss tree and carry out a large scale retrospective test to measure performance. We show that the basis for predictive success is preferred orders in matched series and that this preference is stronger for longer series. The Matsy algorithm allows medicinal chemists to integrate activity trends from diverse medicinal chemistry programs and apply them to problems of interest as a Topliss-like recommendation or as a hypothesis generator to aid compound design.
PMCID: PMC3968889  PMID: 24601597
10.  On the need for an international effort to capture, share and use crystallization screening data 
Development of an ontology for the description of crystallization experiments and results is proposed.
When crystallization screening is conducted many outcomes are observed but typically the only trial recorded in the literature is the condition that yielded the crystal(s) used for subsequent diffraction studies. The initial hit that was optimized and the results of all the other trials are lost. These missing results contain information that would be useful for an improved general understanding of crystallization. This paper provides a report of a crystallization data exchange (XDX) workshop organized by several international large-scale crystallization screening laboratories to discuss how this information may be captured and utilized. A group that administers a significant fraction of the world’s crystallization screening results was convened, together with chemical and structural data informaticians and computational scientists who specialize in creating and analysing large disparate data sets. The development of a crystallization ontology for the crystallization community was proposed. This paper (by the attendees of the workshop) provides the thoughts and rationale leading to this conclusion. This is brought to the attention of the wider audience of crystallographers so that they are aware of these early efforts and can contribute to the process going forward.
PMCID: PMC3310524  PMID: 22442216
crystallization screening data; crystallization ontology
12.  Foreign Language Translation of Chemical Nomenclature by Computer 
Chemical compound names remain the primary method for conveying molecular structures between chemists and researchers. In research articles, patents, chemical catalogues, government legislation, and textbooks, the use of IUPAC and traditional compound names is universal, despite efforts to introduce more machine-friendly representations such as identifiers and line notations. Fortunately, advances in computing power now allow chemical names to be parsed and generated (read and written) with almost the same ease as conventional connection tables. A significant complication, however, is that although the vast majority of chemistry uses English nomenclature, a significant fraction is in other languages. This complicates the task of filing and analyzing chemical patents, purchasing from compound vendors, and text mining research articles or Web pages. We describe some issues with manipulating chemical names in various languages, including British, American, German, Japanese, Chinese, Spanish, Swedish, Polish, and Hungarian, and describe the current state-of-the-art in software tools to simplify the process.
PMCID: PMC2659868  PMID: 19239237
13.  Foreign language examples in chemical nomenclature 
Chemistry Central Journal  2008;2(Suppl 1):P29.
PMCID: PMC4236288

Results 1-13 (13)