Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Bacteriophage P23-77 Capsid Protein Structures Reveal the Archetype of an Ancient Branch from a Major Virus Lineage 
Structure(London, England:1993)  2013;21(5):718-726.
It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor.
•High-resolution structures of the two major capsid proteins of bacteriophage P23-77•P23-77 capsid proteins exhibit a conserved single β-barrel core fold•P23-77 is an ancient relative of the double β-barrel lineage of viruses•Capsid model illustrates that P23-77 uses a novel method of organization
Rissanen et al. propose a model for the architecture and assembly of bacteriophage P23-77 quite different from those previously published. The capsid proteins and their mode of association to form the virus particle suggest that P23-77 share a common evolutionary origin with the PRD1/Adenovirus lineage.
PMCID: PMC3919167  PMID: 23623731
2.  Crystallization and preliminary crystallographic analysis of the major capsid proteins VP16 and VP17 of bacteriophage P23-77 
The major capsid proteins VP16 and VP17 of bacteriophage P23-77 have been crystallized using both recombinant and purified virus and preliminary diffraction analyses have been performed.
Members of the diverse double-β-barrel lineage of viruses are identified by the conserved structure of their major coat protein. New members of this lineage have been discovered based on structural analysis and we are interested in identifying relatives that utilize unusual versions of the double-β-barrel fold. One candidate for such studies is P23-77, an icosahedral dsDNA bacteriophage that infects the extremophile Thermus thermophilus. P23-77 has two major coat proteins, namely VP16 and VP17, of a size consistent with a single-β-barrel core fold. These previously unstudied proteins have now been successfully expressed as recombinant proteins, purified and crystallized using hanging-drop and sitting-drop vapour-diffusion methods. Crystals of coat proteins VP16 and VP17 have been obtained as well as of a putative complex. In addition, virus-derived material has been crystallized. Diffraction data have been collected to beyond 3 Å resolution for five crystal types and structure determinations are in progress.
PMCID: PMC3374517  PMID: 22691792
bacteriophages; capsid proteins

Results 1-2 (2)