PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Adeno-Associated Virus Capsid Proteins May Play a Role in Transcription and Second-Strand Synthesis of Recombinant Genomes 
Journal of Virology  2014;88(2):1071-1079.
A group of four interacting amino acids in adeno-associated virus type 8 (AAV8) called the pH quartet has been shown to undergo a structural change when subjected to acidic pH comparable to that seen in endosomal compartments. We examined the phenotypes of mutants with mutations in these amino acids as well as several nearby residues in the background of AAV2. We found that three of the mutations in this region (Y704A, E562A, and E564A) produce normal titers of mature capsids but are extremely defective for transduction (>107-fold). The remaining mutants were also defective for transduction, but the defect in these mutants (E563A, E561A, H526A, and R389A) is not as severe (3- to 22-fold). Two other mutants (Y700A and Y730A) were found to be defective for virus assembly. One of the extremely defective mutants (Y704A) was found to enter the cell, traffic to the nucleus, and uncoat its DNA nearly as efficiently as the wild type. This suggested that some step after nuclear entry and uncoating was defective. To see if the extremely defective mutants were impaired in second-strand synthesis, the Y704A, E562A, and E564A mutants containing self-complementary DNA were compared with virus containing single-stranded genomes. Two of the mutants (Y704A and E564A) showed 1-log and 3-log improvements in infectivity, respectively, while the third mutant (E562A) showed no change. This suggested that inhibition of second-strand synthesis was responsible for some but not most of the defect in these mutants. Comparison of Y704A mRNA synthesis with that of the wild-type capsid showed that accumulation of steady-state mRNA in the Y704A mutant was reduced 450-fold, even though equal genome numbers were uncoated. Our experiments have identified a novel capsid function. They suggest that AAV capsids may play a role in the initiation of both second-strand synthesis and transcription of the input genome.
doi:10.1128/JVI.02093-13
PMCID: PMC3911664  PMID: 24198419
2.  Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids 
Journal of Virology  2013;87(9):5128-5140.
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors.
doi:10.1128/JVI.03416-12
PMCID: PMC3624314  PMID: 23449783
3.  Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33 
Journal of Virology  2013;87(17):9473-9485.
Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33.
doi:10.1128/JVI.00596-13
PMCID: PMC3754105  PMID: 23720715
4.  Production, purification, crystallization and structure determination of H-1 Parvovirus  
The production, purification, crystallization and crystallographic analysis of H-1 Parvovirus, a gene-therapy vector, are reported.
Crystals of H-1 Parvovirus (H-1PV), an antitumor gene-delivery vector, were obtained for DNA-containing capsids and diffracted X-rays to 2.7 Å resolution using synchrotron radiation. The crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 255.4, b = 350.4, c = 271.6 Å, β = 90.34°. The unit cell contained two capsids, with one capsid per crystallographic asymmetric unit. The H-1PV structure has been determined by molecular replacement and is currently being refined.
doi:10.1107/S1744309112045563
PMCID: PMC3509992  PMID: 23192051
H-1 Parvovirus; viruses; antitumor gene delivery
5.  Structural Insight into the Unique Properties of Adeno-Associated Virus Serotype 9 
Journal of Virology  2012;86(12):6947-6958.
Adeno-associated virus serotype 9 (AAV9) has enhanced capsid-associated tropism for cardiac muscle and the ability to cross the blood-brain barrier compared to other AAV serotypes. To help identify the structural features facilitating these properties, we have used cryo-electron microscopy (cryo-EM) and three-dimensional image reconstruction (cryo-reconstruction) and X-ray crystallography to determine the structure of the AAV9 capsid at 9.7- and 2.8-Å resolutions, respectively. The AAV9 capsid exhibits the surface topology conserved in all AAVs: depressions at each icosahedral two-fold symmetry axis and surrounding each five-fold axis, three separate protrusions surrounding each three-fold axis, and a channel at each five-fold axis. The AAV9 viral protein (VP) has a conserved core structure, consisting of an eight-stranded, β-barrel motif and the αA helix, which are present in all parvovirus structures. The AAV9 VP differs in nine variable surface regions (VR-I to -IX) compared to AAV4, but at only three (VR-I, VR-II, and VR-IV) compared to AAV2 and AAV8. VR-I differences modify the raised region of the capsid surface between the two-fold and five-fold depressions. The VR-IV difference produces smaller three-fold protrusions in AAV9 that are less “pointed” than AAV2 and AAV8. Significantly, residues in the AAV9 VRs have been identified as important determinants of cellular tropism and transduction and dictate its antigenic diversity from AAV2. Hence, the AAV9 VRs likely confer the unique infection phenotypes of this serotype.
doi:10.1128/JVI.07232-11
PMCID: PMC3393551  PMID: 22496238
6.  Crystal Structure of the Human NKX2.5 Homeodomain in Complex with DNA Target 
Biochemistry  2012;51(32):6312-6319.
NKX2.5 is a homeodomain containing transcription factor regulating cardiac formation and function, and its mutations are linked to congenital heart disease. Here we provide the first report of the crystal structure of the NKX2.5 homeodomain in complex with double-stranded DNA of its endogenous target, locating within the proximal promoter –242 site of the atrial natriuretic factor gene. The crystal structure, determined at 1.8 Å resolution, demonstrates that NKX2.5 homeodomains occupy both DNA binding sites separated by five nucleotides without physical interaction between themselves. The two homeodomains show identical conformation despite the differences in the DNA sequences they bind, and no significant bending of the DNA was observed. Tyr54, absolutely conserved in NK2 family proteins, mediates sequence-specific interaction with the TAAG motif. This high resolution crystal structure of NKX2.5 protein provides a detailed picture of protein and DNA interactions, which allows us to predict DNA binding of mutants identified in human patients.
doi:10.1021/bi300849c
PMCID: PMC3448007  PMID: 22849347
7.  Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking ▿ 
Journal of Virology  2011;85(22):11791-11799.
The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.
doi:10.1128/JVI.05305-11
PMCID: PMC3209291  PMID: 21900159
8.  Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle 
Nature biotechnology  2009;28(1):79-82.
Reengineering the receptor footprints of adeno-associated virus (AAV) isolates may yield variants with improved properties for clinical applications. We generated a panel of synthetic AAV2 vectors by replacing a hexapeptide sequence in a previously identified heparan sulfate receptor footprint with corresponding residues from other AAV strains. This approach yielded several chimeric capsids displaying systemic tropism after intravenous administration in mice. Of particular interest, an AAV2/AAV8 chimera designated AAV2i8 displayed an altered antigenic profile, readily traversed the blood vasculature, and selectively transduced cardiac and whole-body skeletal muscle tissues with high efficiency. Unlike other AAV serotypes, which are preferentially sequestered in the liver, AAV2i8 showed markedly reduced hepatic tropism. These features of AAV2i8 suggest that it is well suited to translational studies in gene therapy of musculoskeletal disorders.
doi:10.1038/nbt.1599
PMCID: PMC2912150  PMID: 20037580
9.  Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 9 
The purification, crystallization and preliminary X-ray crystallographic analyses of the AAV9 viral capsid are reported.
Adeno-associated virus (AAV) serotype 9, which is under development for gene-delivery applications, shows significantly enhanced capsid-associated transduction efficiency in muscle compared with other AAV serotypes. With the aim of characterizing the structural determinants of this property, the purification, crystallization and preliminary X-ray crystallographic analyses of the AAV9 viral capsid are reported. The crystals diffracted X-rays to 2.8 Å resolution using synchrotron radiation and belonged to the trigonal space group P32, with unit-cell parameters a = b = 251.0, c = 640.0 Å. There are three complete viral capsids in the crystal unit cell. The orientation and position of the asymmetric unit capsid have been determined by molecular-replacement methods and structure determination is in progress.
doi:10.1107/S1744309109021460
PMCID: PMC2705643  PMID: 19574648
adeno-associate virus serotype 9; viruses
10.  Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints 
Gene therapy  2009;16(12):1416-1428.
Summary
Vectors based on the adeno-associated virus are attractive and versatile vehicles for in vivo gene transfer. The virus capsid is the primary interface with the cell that defines many pharmacological, immunological and molecular properties. Determinants of these interactions are often restricted to a limited number of capsid amino acids. In this study, a portfolio of novel AAV vectors was developed following a structure-function analysis of naturally occurring AAV capsid isolates. Singletons, which are particular residues on the AAV capsid that were variable in otherwise conserved amino acid positions were found to impact on vector's ability to be manufactured or to transduce. Data for those residues that mapped to monomer-monomer interface regions on the particle structure suggested a role in particle assembly. The change of singleton residues to the conserved amino acid resulted in the rescue of many isolates that were defective upon initial isolation. This led to the development of an AAV vector portfolio that encompasses 6 different clades and 3 other distinct AAV niches. Evaluation of the in vivo gene transfer efficiency of this portfolio following intravenous and intramuscular administration highlighted a clade-specific tropism. These studies further the design and selection of AAV capsids for gene therapy applications.
doi:10.1038/gt.2009.101
PMCID: PMC2795093  PMID: 19727141
gene transfer; gene therapy; adeno-associated viruses; AAV; vector; capsid; muscle; liver
11.  Crystallization and preliminary X-ray analysis of the NKX2.5 homeodomain in complex with DNA 
The NKX2.5 homeodomain has been crystallized in complex with DNA. Diffraction data were collected to 1.7 Å resolution.
As part of an effort to elucidate the molecular basis for the pathogenesis of NKX2.5 mutations in congenital heart disease using X-ray crystallography, the NKX2.5 homeodomain has been crystallized in complex with a specific DNA element, the −242 promoter region of atrial natriuretic factor. Crystals of the homeodomain–DNA complex diffracted X-rays to 1.7 Å resolution and belonged to space group P65, with unit-cell parameters a = b = 71.5, c = 94.3 Å. The asymmetric unit contained two molecules of the NKX2.5 homeodomain and one double-stranded oligonucleotide.
doi:10.1107/S1744309108033447
PMCID: PMC2581709  PMID: 18997347
NKX2.5 homeodomain; congenital heart disease
12.  Crystallization and preliminary X-ray analysis of the NKX2.5 homeodomain in complex with DNA 
As part of an effort to elucidate the molecular basis for the pathogenesis of NKX2.5 mutations in congenital heart disease using X-ray crystallography, the NKX2.5 homeodomain has been crystallized in complex with a specific DNA element, the −242 promoter region of atrial natriuretic factor. Crystals of the homeodomain–DNA complex diffracted X-rays to 1.7 Å resolution and belonged to space group P65, with unit-cell parameters a = b = 71.5, c = 94.3 Å. The asymmetric unit contained two molecules of the NKX2.5 homeodomain and one double-stranded oligonucleotide.
doi:10.1107/S1744309108033447
PMCID: PMC2581709  PMID: 18997347
13.  Structure of Adeno-Associated Virus Serotype 8, a Gene Therapy Vector▿  
Journal of Virology  2007;81(22):12260-12271.
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors, and their efficacy could be improved by a detailed understanding of their viral capsid structures. AAV serotype 8 (AAV8) shows a significantly greater liver transduction efficiency than those of other serotypes, which has resulted in efforts to develop this virus as a gene therapy vector for hemophilia A and familial hypercholesterolemia. Pseudotyping studies show that the differential tissue tropism and transduction efficiencies exhibited by the AAVs result from differences in their capsid viral protein (VP) amino acids. Towards identifying the structural features underpinning these disparities, we report the crystal structure of the AAV8 viral capsid determined to 2.6-Å resolution. The overall topology of its common overlapping VP is similar to that previously reported for the crystal structures of AAV2 and AAV4, with an eight-stranded β-barrel and long loops between the β-strands. The most significant structural differences between AAV8 and AAV2 (the best-characterized serotype) are located on the capsid surface at protrusions surrounding the two-, three-, and fivefold axes at residues reported to control transduction efficiency and antibody recognition for AAV2. In addition, a comparison of the AAV8 and AAV2 capsid surface amino acids showed a reduced distribution of basic charge for AAV8 at the mapped AAV2 heparin sulfate receptor binding region, consistent with an observed non-heparin-binding phenotype for AAV8. Thus, this AAV8 structure provides an additional platform for mutagenesis efforts to characterize AAV capsid regions responsible for differential cellular tropism, transduction, and antigenicity for these promising gene therapy vectors.
doi:10.1128/JVI.01304-07
PMCID: PMC2168965  PMID: 17728238
14.  Production, purification, crystallization and preliminary X-ray analysis of adeno-associated virus serotype 8 
The production, purification, crystallization and preliminary X-ray crystallographic analysis of adeno-associated virus serotype 8 is reported.
Adeno-associated viruses (AAVs) are actively being developed for clinical gene-therapy applications and the efficiencies of the vectors could be significantly improved by a detailed understanding of their viral capsid structures and the structural determinants of their tissue-transduction interactions. AAV8 is ∼80% identical to the more widely studied AAV2, but its liver-transduction efficiency is significantly greater than that of AAV2 and other serotypes. The production, purification, crystallization and preliminary X-ray crystallographic analysis of AAV8 viral capsids are reported. The crystals diffract X-rays to 3.0 Å resolution using synchrotron radiation and belong to the hexagonal space group P6322, with unit-cell parameters a = 257.5, c = 443.5 Å. The unit cell contains two viral particles, with ten capsid viral protein monomers per crystallographic asymmetric unit.
doi:10.1107/S1744309105014132
PMCID: PMC1952340  PMID: 16511095
adeno-associated viruses; gene therapy; parvovirus
15.  CORRECTION 
doi:10.1084/jem.20041890022505c
PMCID: PMC2213092
16.  Structural Determinants of Tissue Tropism and In Vivo Pathogenicity for the Parvovirus Minute Virus of Mice 
Journal of Virology  2005;79(17):10931-10943.
Two strains of the parvovirus minute virus of mice (MVM), the immunosuppressive (MVMi) and the prototype (MVMp) strains, display disparate in vitro tropism and in vivo pathogenicity. We report the crystal structures of MVMp virus-like particles (MVMpb) and native wild-type (wt) empty capsids (MVMpe), determined and refined to 3.25 and 3.75 Å resolution, respectively, and their comparison to the structure of MVMi, also refined to 3.5 Å resolution in this study. A comparison of the MVMpb and MVMpe capsids showed their structures to be the same, providing structural verification that some heterologously expressed parvovirus capsids are indistinguishable from wt capsids produced in host cells. The structures of MVMi and MVMp capsids were almost identical, but local surface conformational differences clustered from symmetry-related capsid proteins at three specific domains: (i) the icosahedral fivefold axis, (ii) the “shoulder” of the protrusion at the icosahedral threefold axis, and (iii) the area surrounding the depression at the icosahedral twofold axis. The latter two domains contain important determinants of MVM in vitro tropism (residues 317 and 321) and forward mutation residues (residues 399, 460, 553, and 558) conferring fibrotropism on MVMi. Furthermore, these structural differences between the MVM strains colocalize with tropism and pathogenicity determinants mapped for other autonomous parvovirus capsids, highlighting the importance of common parvovirus capsid regions in the control of virus-host interactions.
doi:10.1128/JVI.79.17.10931-10943.2005
PMCID: PMC1193591  PMID: 16103145
17.  Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45 
CD45 is the prototypic member of transmembrane receptor-like protein tyrosine phosphatases (RPTPs) and has essential roles in immune functions. The cytoplasmic region of CD45, like many other RPTPs, contains two homologous protein tyrosine phosphatase domains, active domain 1 (D1) and catalytically impaired domain 2 (D2). Here, we report crystal structure of the cytoplasmic D1D2 segment of human CD45 in native and phosphotyrosyl peptide-bound forms. The tertiary structures of D1 and D2 are very similar, but doubly phosphorylated CD3ζ immunoreceptor tyrosine-based activation motif peptide binds only the D1 active site. The D2 “active site” deviates from the other active sites significantly to the extent that excludes any possibility of catalytic activity. The relative orientation of D1 and D2 is very similar to that observed in leukocyte common antigen–related protein with both active sites in an open conformation and is restrained through an extensive network of hydrophobic interactions, hydrogen bonds, and salt bridges. This crystal structure is incompatible with the wedge model previously suggested for CD45 regulation.
doi:10.1084/jem.20041890
PMCID: PMC2213029  PMID: 15684325

Results 1-17 (17)