PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (34)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Mitochondria, endothelial cell function, and vascular diseases 
Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction.
doi:10.3389/fphys.2014.00175
PMCID: PMC4018556  PMID: 24834056
mitochondria; endothelial cell; atherosclerosis; diabetes mellitus; pulmonary artery hypertension; hypertension; antioxidants; caloric restriction
2.  Zinc-α2-Glycoprotein Is Associated With Insulin Resistance in Humans and Is Regulated by Hyperglycemia, Hyperinsulinemia, or Liraglutide Administration 
Diabetes Care  2013;36(5):1074-1082.
OBJECTIVE
Zinc-α2-glycoprotein (ZAG) has been proposed to play a role in the pathogenesis of insulin resistance. Previous studies in humans and in rodents have produced conflicting results regarding the link between ZAG and insulin resistance. The objective of this study was to examine the relationships between ZAG and insulin resistance in cross-sectional and interventional studies.
RESEARCH DESIGN AND METHODS
Serum ZAG (determined with ELISA) was compared with various parameters related to insulin resistance in subjects with normal glucose tolerance, impaired glucose tolerance (IGT), and newly diagnosed type 2 diabetes mellitus (T2DM), and in women with or without polycystic ovary syndrome (PCOS). Euglycemic-hyperinsulinemic clamps were performed in healthy and PCOS women. Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of ZAG. The effect of a glucagon-like peptide-1 agonist on ZAG was studied in a 12-week liraglutide treatment trial.
RESULTS
Circulating ZAG was lower in patients with IGT and newly diagnosed T2DM than in controls. Circulating ZAG correlated positively with HDL cholesterol and adiponectin, and correlated inversely with BMI, waist-to-hip ratio, body fat percentage, triglycerides, fasting blood glucose, fasting insulin, HbA1c, and homeostasis model assessment of insulin resistance (HOMA-IR). On multivariate analysis, ZAG was independently associated with BMI, HOMA-IR, and adiponectin. ZAG mRNA and protein were decreased in adipose tissue of T2DM patients. Moreover, circulating ZAG levels were lower in women with PCOS than in women with high insulin sensitivity. Liraglutide treatment for 12 weeks significantly increased circulating ZAG levels.
CONCLUSIONS
We conclude that ZAG may be an adipokine associated with insulin resistance.
doi:10.2337/dc12-0940
PMCID: PMC3631846  PMID: 23275352
3.  A 10-year population-based nationwide descriptive analysis of pediatric emergency care 
BMC Pediatrics  2014;14:100.
Background
Pediatric emergency care medicine is an important field of health care. This study aimed to investigate the 10-year pediatric emergency care in children aged 0-17 years old in Taiwan.
Methods
Systematic random samples from the National Health Insurance Research Database of Taiwan in the period 2000-2009 were analyzed. Children recorded as undergoing emergency care were enrolled and divided into different age groups. The frequency of emergency visits, age, cost per visit, seasonality, number of hospitalizations, and diagnosis were analyzed.
Results
A total of 764,598 children were enrolled. These children accounted for 25% of all emergency cases and their mean age was 6.1 years. Children aged 0-5 years formed the largest group, with male predominance (57.5%). The incidence of emergency visits was 29133 ± 3104 per 100,000 children per year (mean ± SD). Acute upper airway infection, fever, and acute gastrointestinal illness were the most common diagnoses among all non-hospitalized children. Some (4.51%) required subsequent hospitalization and their most common diagnoses were fluid/electrolyte disorder, upper/lower airway infection, and acute gastrointestinal illness. The group of children aged 12-17 years had cases of traumatic injury and childbirth.
Conclusions
In Taiwan, 25% of individuals seeking emergency care are children, mostly aged 0-5 years old. Costs and disease patterns vary among different age groups. Preventive measures targeting all children should focus on respiratory and gastrointestinal diseases, but should target different diseases for different age groups to improve child health.
doi:10.1186/1471-2431-14-100
PMCID: PMC3989785  PMID: 24720913
Children; Emergency; Hospitalization; National health insurance research database
4.  A Behavioral Genetic Study of Intrapersonal and Interpersonal Dimensions of Narcissism 
PLoS ONE  2014;9(4):e93403.
Narcissism, characterized by grandiose self-image and entitled feelings to others, has been increasingly prevalent in the past decades. This study examined genetic and environmental bases of two dimensions of narcissism: intrapersonal grandiosity and interpersonal entitlement. A total of 304 pairs of twins from Beijing, China completed the Narcissistic Grandiosity Scale and the Psychological Entitlement Scale. Both grandiosity (23%) and entitlement (35%) were found to be moderately heritable, while simultaneously showing considerable non-shared environmental influences. Moreover, the genetic and environmental influences on the two dimensions were mostly unique (92–93%), with few genetic and environmental effects in common (7–8%). The two dimensions of narcissism, intrapersonal grandiosity and interpersonal entitlement, are heritable and largely independent of each other in terms of their genetic and environmental sources. These findings extend our understanding of the heritability of narcissism on the one hand. On the other hand, the study demonstrates the rationale for distinguishing between intrapersonal and interpersonal dimensions of narcissism, and possibly personality in general as well.
doi:10.1371/journal.pone.0093403
PMCID: PMC3973692  PMID: 24695616
5.  Implicit Self-Esteem Decreases in Adolescence: A Cross-Sectional Study 
PLoS ONE  2014;9(2):e89988.
Implicit self-esteem has remained an active research topic in both the areas of implicit social cognition and self-esteem in recent decades. The purpose of this study is to explore the development of implicit self-esteem in adolescents. A total of 599 adolescents from junior and senior high schools in East China participated in the study. They ranged in age from 11 to 18 years with a mean age of 14.10 (SD = 2.16). The degree of implicit self-esteem was assessed using the Implicit Association Test (IAT) with the improved D score as the index. Participants also completed the Rosenberg Self-Esteem Scale (α = 0.77). For all surveyed ages, implicit self-esteem was positively biased, all ts>8.59, all ps<0.001. The simple correlation between implicit self-esteem and age was significant, r = −.25, p = 1.0×10−10. A regression with implicit self-esteem as the criterion variable, and age, gender, and age × gender interaction as predictors further revealed the significant negative linear relationship between age and implicit self-esteem, β = −0.19, t = −3.20, p = 0.001. However, explicit self-esteem manifested a reverse “U” shape throughout adolescence. Implicit self-esteem in adolescence manifests a declining trend with increasing age, suggesting that it is sensitive to developmental or age-related changes. This finding enriches our understanding of the development of implicit social cognition.
doi:10.1371/journal.pone.0089988
PMCID: PMC3934976  PMID: 24587169
6.  Accuracy of 16/18G core needle biopsy for ultrasound-visible breast lesions 
Background
To assess the accuracy of ultrasound-guided 16G or 18G core needle biopsy (CNB) for ultrasound-visible breast lesions, and to analyze the effects of lesion features.
Methods
Between July 2005 and July 2012, 4,453 ultrasound-detected breast lesions underwent ultrasound-guided CNB and were retrospectively reviewed. Surgical excision was performed for 955 lesions (566 with 16G CNB and 389 with 18G CNB) which constitute the basis of the study. Histological findings were compared between the ultrasound-guided CNB and the surgical excision to determine sensitivity, false-negative rate, agreement rate, and underestimation rate, according to different lesion features.
Results
Final pathological results were malignant in 84.1% (invasive carcinoma, ductal carcinoma in situ, lymphoma, and metastases), high-risk in 8.4% (atypical lesions, papillary lesions, and phyllodes tumors), and benign in 7.5%. False-negative rates were 1.4% for 16G and 18G CNB. Agreement rates between histological findings of CNB and surgery were 92.4% for 16G and 92.8% for 18G CNB. Overall underestimate rates (high-risk CNB becoming malignant on surgery and ductal carcinoma in situ becoming invasive carcinoma) were 47.4% for 16G and 48.9% for 18G CNB. Agreements were better for mass lesions (16G: 92.7%; 18G: 93.7%) than for non-mass lesions (16G, 85.7%; 18G, 78.3%) (P <0.01). For mass lesions with a diameter ≤10 mm, the agreement rates (16G, 83.3%; 18G, 86.7%) were lower (P <0.01).
Conclusions
Ultrasound-guided 16G and 18G CNB are accurate for evaluating ultrasound-visible breast mass lesions with a diameter >10 mm.
doi:10.1186/1477-7819-12-7
PMCID: PMC3895748  PMID: 24400744
Breast; Beast cancer; Core needle biopsy; Surgical excision; Ultrasound
7.  A Novel Approach to Genetic and Environmental Analysis of Cross-Lagged Associations Over Time: The Cross-Lagged Relationship Between Self-Perceived Abilities and School Achievement is Mediated by Genes as Well as the Environment 
Using longitudinal cross-lagged analysis to infer causal directions of reciprocal effects is one of the most important tools in the developmental armamentarium. The strength of these analyses can be enhanced by analyzing the genetic and environmental aetiology underlying cross-lagged relationships, for which we present a novel approach here. Our approach is based on standard Cholesky decomposition. Standardized path coefficients are employed to assess genetic and environmental contributions to cross-lagged associations. We indicate how our model differs importantly from another approach that does not in fact analyze genetic and environmental contributions to cross-lagged associations. As an illustration, we apply our approach to the analysis of the cross-lagged relationships between self-perceived abilities and school achievement from age 9 to age 12. Self-perceived abilities of 3852 pairs of twins from the UK Twins Early Development Study were assessed using a self-report scale. School achievement was assessed by teachers based on UK National Curriculum criteria. The key cross-lagged association between self-perceived abilities at age 9 and school achievement at age 12 was mediated by genetic influences (28%) as well as shared (55%) and non-shared (16%) environment. The reverse cross-lagged association from school achievement at 9 to self-perceived abilities at 12 was primarily genetically mediated (73%). Unlike the approach to cross-lagged genetic analysis used in recent research, our approach assesses genetic and environmental contributions to cross-lagged associations per se. We discuss implications of finding that genetic factors contribute to the cross-lag between self-perceived abilities at age 9 and school achievement at age 12.
doi:10.1375/twin.13.5.426
PMCID: PMC3819564  PMID: 20874463
cross-lagged association; self-perceived abilities; school achievement
8.  Diversity of methanogens in the hindgut of captive white rhinoceroses, Ceratotherium simum 
BMC Microbiology  2013;13:207.
Background
The white rhinoceros is on the verge of extinction with less than 20,200 animals remaining in the wild. In order to better protect these endangered animals, it is necessary to better understand their digestive physiology and nutritional requirements. The gut microbiota is nutritionally important for herbivorous animals. However, little is known about the microbial diversity in the gastrointestinal tract (GIT) of the white rhinoceros. Methanogen diversity in the GIT may be host species-specific and, or, function-dependent. To assess methanogen diversity in the hindgut of white rhinoceroses, an archaeal 16S rRNA gene clone library was constructed from pooled PCR products obtained from the feces of seven adult animals.
Results
Sequence analysis of 153 archaeal 16S rRNA sequences revealed 47 unique phylotypes, which were assigned to seven operational taxonomic units (OTUs 1 to 7). Sequences assigned to OTU-7 (64 out of 153 total sequencs – 42%) and OTU-5 (18%, 27/153) had 96.2% and 95.5% identity to Methanocorpusculum labreanum, respectively, making Methanocorpusculum labreanum the predominant phylotype in these white rhynoceroses. Sequences belonging to OTU-6 (27%, 42/153) were related (97.6%) to Methanobrevibacter smithii. Only 4% of the total sequences (6/153) were assigned to Methanosphaera stadtmanae (OTU-1). Sequences belonging to OTU-2 (4%, 6/153), OTU-3 (3%, 5/153) and OTU-4 (2%, 3/153) were distantly related (87.5 to 88,4%) to Methanomassiliicoccus luminyensis and were considered to be novel species or strains that have yet-to-be cultivated and characterized.
Conclusion
Phylogenetic analysis indicated that the methanogen species in the hindgut of white rhinoceroses were more similar to those in the hindgut of horses. Our findings may help develop studies on improving the digestibility of forage for sustainable management and better health of these endangered animals.
doi:10.1186/1471-2180-13-207
PMCID: PMC3846858  PMID: 24228793
White rhinoceros; Methanogen; Gut microbial diversity
9.  Mutations in MC1R Gene Determine Black Coat Color Phenotype in Chinese Sheep 
The Scientific World Journal  2013;2013:675382.
The melanocortin receptor 1 (MC1R) plays a central role in regulation of animal coat color formation. In this study, we sequenced the complete coding region and parts of the 5′- and 3′-untranslated regions of the MC1R gene in Chinese sheep with completely white (Large-tailed Han sheep), black (Minxian Black-fur sheep), and brown coat colors (Kazakh Fat-Rumped sheep). The results showed five single nucleotide polymorphisms (SNPs): two non-synonymous mutations previously associated with coat color (c.218 T>A, p.73 Met>Lys. c.361 G>A, p.121 Asp>Asn) and three synonymous mutations (c.429 C>T, p.143 Tyr>Tyr; c.600 T>G, p.200 Leu>Leu. c.735 C>T, p.245 Ile>Ile). Meanwhile, all mutations were detected in Minxian Black-fur sheep. However, the two nonsynonymous mutation sites were not in all studied breeds (Large-tailed Han, Small-tailed Han, Gansu Alpine Merino, and China Merino breeds), all of which are in white coat. A single haplotype AATGT (haplotype3) was uniquely associated with black coat color in Minxian Black-fur breed (P = 9.72E − 72, chi-square test). The first and second A alleles in this haplotype 3 represent location at 218 and 361 positions, respectively. Our results suggest that the mutations of MC1R gene are associated with black coat color phenotype in Chinese sheep.
doi:10.1155/2013/675382
PMCID: PMC3776380  PMID: 24082855
10.  Nonsmall Cell Lung Cancer Therapy: Insight into Multitargeted Small-Molecule Growth Factor Receptor Inhibitors 
BioMed Research International  2013;2013:964743.
To date, lung cancer is the leading cause of cancer-related death worldwide, among which nonsmall cell lung cancer (NSCLC) comprises about 85%. Taking into account the side effects of surgery, radiation, platinum-based doublet chemotherapy, and the growth self-sufficiency characteristic of cancer cells, drugs have been discovered toward growth factor receptor (GFR) to treat NSCLC. As expected, these drugs provide a greater benefit. To increase the efficacy of such growth factor receptor tyrosine kinase inhibitors (RTKIs), coinhibition of GFR signaling pathways and combination of inhibitors along with radiation or chemotherapy have drew intense insight. Although clinical trials about single-agent RTKIs or their combination strategies suggest their increase potency against cancer, they are not beyond adverse effects, and sometimes the effects are more deadly than chemotherapy. Nevertheless the hope for RTKIs may be proved true by further researches and digging deep into cancer therapeutics.
doi:10.1155/2013/964743
PMCID: PMC3713357  PMID: 23936861
11.  Fibroblast Growth Factor Receptor 4 Polymorphisms and Susceptibility to Coronary Artery Disease 
DNA and Cell Biology  2012;31(6):1064-1069.
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play crucial roles in vascular smooth muscle cell proliferation and atherosclerosis and, therefore, may potentially affect the development of coronary artery disease (CAD). FGFR4 rs351855 (Gly388Arg) polymorphism has shown to be a risk factor for many diseases. The aim of this study was to investigate the association between FGFR4 polymorphisms and the susceptibility to CAD in the Chinese population. Two polymorphisms, rs351855 (Gly388Arg) and rs641101, were detected by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing in 687 CAD cases and 732 age-matched controls. Data were analyzed using the chi-square test. Results showed that frequencies of GA genotype, AA genotype, and A allele in rs351855 (Gly388Arg) polymorphism were significantly lower in CAD patients than in controls (odds ratio (OR)=0.78, 95% confidence intervals (CIs): 0.62–0.98, p=0.034; OR=0.58, 95% CI: 0.42–0.80, p=0.001; and OR=0.77, 95% CI: 0.66–0.90, p=0.001, respectively). The rs641101 polymorphism did not show any correlation with CAD. Haplotype analysis revealed that rs351855 and rs641101 AG haplotype also had lower frequency in CAD patients (OR=0.79, 95% CI: 0.67–0.92, p=0.002). Our data suggested that the FGFR4 rs351855 (Gly388Arg) polymorphism and AG haplotype (rs351855 and rs641101) could act as protective factors against CAD in the Chinese population and indicated that a single gene polymorphism could have diverse functions in different diseases.
doi:10.1089/dna.2011.1552
PMCID: PMC3378960  PMID: 22313031
12.  miR-574-5p negatively regulates Qki6/7 to impact β-catenin/Wnt signalling and the development of colorectal cancer 
Gut  2012;62(5):716-726.
Objective
Deficiency or reduced expression of signal transduction and activation of RNA family protein Quaking (Qki) is associated with developmental defects in neural and vascular tissues and the development of debilitating human diseases including colorectal cancer (CRC). However, the mechanisms underlying the aberrant downregulation or deficiency of Qki were uncertain.
Design
Expression of miR-574-5p, Qki5/6/7/7b splicing variants, β-catenin and p27Kip1 was determined in mouse and human CRC cells and tissues to investigate the post-transcriptional regulation of Qki isoforms by miR-574-5p and its impact on β-catenin/p27Kip1 signalling, cell cycle progression, proliferation, migration, invasion and tumour growth.
Results
In the CRC tissues of C57BL/6-Apcmin/+ mice, miR-574-5p was found to be significantly upregulated and negatively correlated with the expression of Qki but positively correlated with the expression of β-catenin. In mouse and human CRC cells, miR-574-5p was shown to regulate Qki isoforms (Qki6/7 in particular) post-transcriptionally and caused altered expression in β-catenin and p27Kip1, increased proliferation, migration and invasion and decreased differentiation and cell cycle exit. Furthermore, in clinical CRC tissues, miR-574-5p was shown to be greatly upregulated and inversely correlated with the expression of Qkis. Finally, inhibition of miR-574-5p was shown to suppress the growth of tumours in the nude mice.
Conclusions
Together, these novel findings suggest that miR-574-5p is a potent ribo-regulator for Qkis and that aberrant miR-574-5p upregulation can be oncogenic.
doi:10.1136/gutjnl-2011-301083
PMCID: PMC3618686  PMID: 22490519
miR-574-5p; quaking; colorectal cancer; β-catenin; p27Kip1; abdominal surgery; hepatic encephalopathy; gut inflammation; colorectal cancer; cell biology; colorectal cancer genes; gene mutation
13.  Evaluation of blunt pancreatic injury with contrast-enhanced ultrasonography in comparison with contrast-enhanced computed tomography 
The aim of the present study was to evaluate acute blunt pancreatic injury using contrast-enhanced ultrasonography (CEUS) in comparison with contrast-enhanced computed tomography (CECT). Superficial and deep lesions were established by blunt pancreatic injury in 40 Chinese Guangxi Bama miniature pigs. Conventional ultrasound (US), CEUS and CECT were performed to detect traumatic lesions in the pancreas. A total of 40 lesions were established, including 20 deep lesions and 20 superficial lesions. US identified 21 of the 40 lesions, including 7 of the 20 superficial and 14 of the 20 deep lesions. CEUS identified 34 of the 40 lesions, including 14 of the 20 superficial and 20 of the 20 deep lesions. CECT identified 33 of the 40 lesions, including 13 of the 20 superficial and 20 of the 20 deep lesions. The detection rate of acute blunt pancreatic injury using CEUS was significantly higher compared with that using US (85 vs. 52.5%, P<0.05), however there was no significant difference in the detection rate of pancreatic lesions between CEUS and CECT (85 vs. 82.5%, P>0.05). CEUS improves the diagnostic levels of conventional US and is comparable with CECT scans in the diagnosis of blunt pancreatic injury.
doi:10.3892/etm.2013.1009
PMCID: PMC3671898  PMID: 23737899
pancreas; blunt injury; contrast-enhanced ultrasonography; contrast-enhanced computed tomography
14.  CART peptide induces neuroregeneration in stroke rats 
Utilizing a classic stroke model in rodents, middle cerebral artery occlusion (MCAo), we describe a novel neuroregenerative approach using the repeated intranasal administration of cocaine- and amphetamine-regulated transcript (CART) peptide starting from day 3 poststroke for enhancing the functional recovery of injured brain. Adult rats were separated into two groups with similar infarction sizes, measured by magnetic resonance imaging on day 2 after MCAo, and were treated with CART or vehicle. The CART treatment increased CART level in the brain, improved behavioral recovery, and reduced neurological scores. In the subventricular zone (SVZ), CART enhanced immunolabeling of bromodeoxyuridine, a neural progenitor cell marker Musashi-1, and the proliferating cell nuclear antigen, as well as upregulated brain-derived neurotrophic factor (BDNF) mRNA. AAV–GFP was locally applied to the SVZ to examine migration of SVZ cells. The CART enhanced migration of GFP(+) cells from SVZ toward the ischemic cortex. In SVZ culture, CART increased the size of neurospheres. The CART-mediated cell migration from SVZ explants was reduced by anti-BDNF blocking antibody. Using 1H-MRS (proton magnetic resonance spectroscopy), increases in N-acetylaspartate levels were found in the lesioned cortex after CART treatment in stroke brain. Cocaine- and amphetamine-regulated transcript increased the expression of GAP43 and fluoro-ruby fluorescence in the lesioned cortex. In conclusion, our data suggest that intranasal CART treatment facilitates neuroregeneration in stroke brain.
doi:10.1038/jcbfm.2012.172
PMCID: PMC3564201  PMID: 23211962
BDNF; CART; MRI; neuroregeneration; stroke
15.  Neurotrophic and Neuroprotective Actions of (−)- and (+)-Phenserine, Candidate Drugs for Alzheimer’s Disease 
PLoS ONE  2013;8(1):e54887.
Neuronal dysfunction and demise together with a reduction in neurogenesis are cardinal features of Alzheimer’s disease (AD) induced by a combination of oxidative stress, toxic amyloid-β peptide (Aβ) and a loss of trophic factor support. Amelioration of these was assessed with the Aβ lowering AD experimental drugs (+)-phenserine and (−)-phenserine in neuronal cultures, and actions in mice were evaluated with (+)-phenserine. Both experimental drugs together with the metabolite N1-norphenserine induced neurotrophic actions in human SH-SY5Y cells that were mediated by the protein kinase C (PKC) and extracellular signal–regulated kinases (ERK) pathways, were evident in cells expressing amyloid precursor protein Swedish mutation (APPSWE), and retained in the presence of Aβ and oxidative stress challenge. (+)-Phenserine, together with its (−) enantiomer as well as its N1- and N8-norphenserine and N1,N8-bisnorphenserine metabolites, likewise provided neuroprotective activity against oxidative stress and glutamate toxicity via the PKC and ERK pathways. These neurotrophic and neuroprotective actions were evident in primary cultures of subventricular zone (SVZ) neural progenitor cells, whose neurosphere size and survival were augmented by (+)-phenserine. Translation of these effects in vivo was assessed in wild type and AD APPswe transgenic (Tg2576) mice by doublecortin (DCX) immunohistochemical analysis of neurogenesis in the SVZ, which was significantly elevated by 16 day systemic (+)-phenserine treatment, in the presence of a (+)-phenserine-induced elevation in brain- derived neurotrophic factor (BDNF).
doi:10.1371/journal.pone.0054887
PMCID: PMC3559887  PMID: 23382994
16.  Cellular Mechanism Underlying Formaldehyde-Stimulated Cl− Secretion in Rat Airway Epithelium 
PLoS ONE  2013;8(1):e54494.
Background
Recent studies suggest that formaldehyde (FA) could be synthesized endogeneously and transient receptor potential (TRP) channel might be the sensor of FA. However, the physiological significance is still unclear.
Methodology/Principal Findings
The present study investigated the FA induced epithelial Cl- secretion by activation of TRPV-1 channel located in the nerve ending fiber. Exogenously applied FA induced an increase of ISC in intact rat trachea tissue but not in the primary cultured epithelial cells. Western blot and immunofluorescence analysis identified TRPV-1 expression in rat tracheal nerve ending. Capsazepine (CAZ), a TRPV-1 specific antagonist significantly blocked the ISC induced by FA. The TRPV-1 agonist capsaicin (Cap) induced an increase of ISC, which was similar to the ISC induced by FA. L-703606, an NK-1 specific inhibitor and propranolol, an adrenalin β receptor inhibitor significantly abolished the ISC induced by FA or Cap. In the ion substitute analysis, FA could not induce ISC in the absence of extracelluar Cl-. The ISC induced by FA could be blocked by the non-specific Cl- channel inhibitor DPC and the CFTR specific inhibitor CFTRi-172, but not by the Ca2+-activated Cl- channel inhibitor DIDS. Furthermore, both forskolin, an agonist of adenylate cyclase (AC) and MDL-12330A, an antagonist of AC could block FA-induced ISC.
Conclusion
Our results suggest that FA-induced epithelial ISC response is mediated by nerve, involving the activation of TRPV-1 and release of adrenalin as well as substance P.
doi:10.1371/journal.pone.0054494
PMCID: PMC3553115  PMID: 23372735
17.  The etiology of mathematical self-evaluation and mathematics achievement: understanding the relationship using a cross-lagged twin study from age 9 to 12 
The genetic and environmental origins of individual differences in mathematical self-evaluation over time and its association with later mathematics achievement were investigated in a UK sample of 2138 twin pairs at ages 9 and 12. Self-evaluation indexed how good children think they are at mathematical activities and how much they like those activities. Mathematics achievement was assessed by teachers based on UK National Curriculum standards. At both ages self-evaluation was approximately 40% heritable, with the rest of the variance explained by non-shared environment. The results also suggested moderate reciprocal associations between self-evaluation and mathematics achievement across time, with earlier self-evaluation predicting later performance and earlier performance predicting later self-evaluation. These cross-lagged relationships were genetically rather than environmentally mediated.
doi:10.1016/j.lindif.2011.09.001
PMCID: PMC3217262  PMID: 22102781
Self-evaluation; Math achievement; Cross-lagged association; Twins
18.  Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition 
Background
Lycorine, a natural alkaloid extracted from Amaryllidaceae, has shown various pharmacological effects. Recent studies have focused on the potential antitumor activity of lycorine. In our previous study, we found that lycorine decrease the cell viability of leukemia HL-60 cells and multiple myeloma KM3 cells and induces cell apoptosis. However, the effect and molecular mechanism of lycorine on human chronic myelocytic leukemia cells has yet to be determined.
Methods
Human chronic myelocytic leukemia cells K562 were treated with lycorine. Cell viability was monitored using the method of CCK-8. The histone deacetylase (HDAC) enzymatic activity was detected by HDAC colorimetric assay, and the cell cycle was analyzed by flow cytometry. The expression of cell-cycle related proteins were identified using Western blot.
Results
In the present study, we further revealed that lycorine can inhibit the proliferation of K562 cells. Analysis of HDAC activity showed that lycroine decreases HDAC enzymatic activities in K562 cells in a dose-dependent manner. Inhibition of HDAC activity has been associated with cell-cycle arrest and growth inhibition. We evaluated the cell cycle distribution after lycorine treatment and found that lycorine causes cell-cycle arrest in the G0/G1 phase. To investigate the mechanism behind this cell cycle arrest, G1-related proteins were assayed by Western blot. After lycorine treatment, cyclin D1 and cyclin-dependent kinase 4 expressions were inhibited and retinoblastoma protein phosphorylation was reduced. Lycorine treatment also significantly upregulated the expression of p53 and its target gene product, p21.
Conclusions
These results suggest that inhibition of HDAC activity is responsible for at least part of the induction of cell-cycle arrest in the G0/G1 phase by lycorine and provide a mechanistic framework for further exploring the use of lycorine as a novel antitumor agent.
doi:10.1186/1475-2867-12-49
PMCID: PMC3537594  PMID: 23176676
Lycorine; K562 cell line; HDAC inhibition; G0/G1 phase arrest
19.  Enhanced neurodegeneration after a high dose of methamphetamine in Adenosine A3 receptor Null mutant mice 
Neuroscience  2011;194:170-180.
Previous reports have indicated that adenosine A3 receptor (A3R) knockout mice are more sensitive to ischemic or hypoxic brain injury. The purpose of this study was to examine if suppression of A3R expression is associated with increase in sensitivity to injury induced by a high dose of methamphetamine (Meth). Adult male A3R null mutant (−/−) mice and their controls (+/+) were injected with 4 doses (2 hours apart) of Meth (10 mg/kg) or saline. Animals were placed in a behavioral activity chamber, equipped with food and water, for 52 hours starting from one day after injections. The first 4 hours were used for studying exploratory behaviors and the next 48 hours were used to measure locomotor activity. High doses of Meth equally reduced the 4-hour exploratory behavior in −/− and +/+ mice. Meth suppressed locomotor activity between 4 and 52 hours in both groups, with a greater reduction being found in the −/− mice. Brain tissues were collected at 3 days after the Meth or saline injections. Meth treatment reduced striatal dopamine (DA) levels in both +/+ and −/− mice, examined by HPLC, with an increase in DOPAC/DA ratio being found only in −/− animals. Meth also significantly increased ionized calcium-binding adaptor molecule 1 (Iba-1) and cleaved caspase-3 level in striatum as well as Iba-1 and TNFα mRNA expression in nigra in −/−, compared to +/+, mice. Previous studies have shown that pharmacological suppression of VMAT2 by reserpine enhanced Meth toxicity by increasing cytosolic DA and inflammation. A significant reduction in striatal VMAT2 expression was found in −/− mice, compared to +/+ mice, suggesting that increase in sensitivity to Meth injury in −/− mice may be related to a reduction in VMAT2 expression in these mice. In conclusion, our data suggest that A3R −/− mice are more sensitive to high doses of Meth.
doi:10.1016/j.neuroscience.2011.08.013
PMCID: PMC3222939  PMID: 21867746
20.  Hepatoprotective activities of a sesquiterpene-rich fraction from the aerial part of Cichorium glandulosum 
Chinese Medicine  2012;7:21.
Background
Cichorium glandulosum Boiss. et Huet is used for treatment of liver disorders, and its effects are attributed to sesquiterpenes. This study aims to investigate the hepatoprotective effects of a sesquiterpene-rich fraction (SRF) from the aerial part of C. glandulosum on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in mice, and on priming with Bacillus Calmette–Guerin (BCG) followed by lipopolysaccharide (LPS)-induced immunological liver injury in mice.
Methods
SRF was suspended in water and administered to mice at 0.05, 0.10 and 0.20 g/kg body weight for 7 consecutive days. An active control drug (bifendate pills) was suspended in distilled water and administered to mice at 0.40 g/kg body weight for 7 consecutive days. Hepatotoxicity was induced by intraperitoneal injection of 0.1% CCl4 (0.2 mL/mouse) at 13 h before the last drug administration, or by tail intravenous injection of BCG (0.2 mL/mouse) before the first drug administration and LPS (0.2 mL/mouse; 8 μg) at 15 h before the last drug administration. Blood samples and the livers were collected for evaluation of the biochemical parameters of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (TBIL).
Results
SRF significantly reduced the impact of CCl4 toxicity. The highest dose of SRF (0.20 g/kg) was the most effective, reflected by significant reductions in the levels of AST (P = 0.001), ALT (P = 0.000) and TBIL (P = 0.009). The serum enzymatic levels induced by BCG and subsequent LPS injection were significantly and dose-dependently restored by SRF, reflected by significant reductions in the levels of AST (P = 0.003), ALT (P = 0.003) and TBIL (P = 0.007) for the highest dose of SRF (0.20 g/kg).
Conclusion
SRF is hepatoprotective in animal models of chemical and immunological acute liver injury.
doi:10.1186/1749-8546-7-21
PMCID: PMC3507663  PMID: 23021236
21.  Structure of a hexameric form of RadA recombinase from Methanococcus voltae  
Hexameric rings of RadA recombinase from M. voltae have been crystallized. Structural comparisons suggest that homologues of RadA tend to form double-ringed assemblies.
Archaeal RadA proteins are close homologues of eukaryal Rad51 and DMC1 proteins and are remote homologues of bacterial RecA proteins. For the repair of double-stranded breaks in DNA, these recombinases promote a pivotal strand-exchange reaction between homologous single-stranded and double-stranded DNA substrates. This DNA-repair function also plays a key role in the resistance of cancer cells to chemotherapy and radiotherapy and in the resistance of bacterial cells to antibiotics. A hexameric form of a truncated Methanococcus voltae RadA protein devoid of its small N-terminal domain has been crystallized. The RadA hexamers further assemble into two-ringed assemblies. Similar assemblies can be observed in the crystals of Pyrococcus furiosus RadA and Homo sapiens DMC1. In all of these two-ringed assemblies the DNA-interacting L1 region of each protomer points inward towards the centre, creating a highly positively charged locus. The electrostatic characteristics of the central channels can be utilized in the design of novel recombinase inhibitors.
doi:10.1107/S1744309112010226
PMCID: PMC3374503  PMID: 22691778
RadA recombinase; Methanococcus voltae
22.  Inhibition of Aldose Reductase Activates Hepatic Peroxisome Proliferator-Activated Receptor-α and Ameliorates Hepatosteatosis in Diabetic db/db Mice 
Experimental Diabetes Research  2011;2012:789730.
We previously demonstrated in streptozotocin-induced diabetic mice that deficiency or inhibition of aldose reductase (AR) caused significant dephosphorylation of hepatic transcriptional factor PPARα, leading to its activation and significant reductions in serum lipid levels. Herein, we report that inhibition of AR by zopolrestat or by a short-hairpin RNA (shRNA) against AR caused a significant reduction in serum and hepatic triglycerides levels in 10-week old diabetic db/db mice. Meanwhile, hyperglycemia-induced phosphorylation of hepatic ERK1/2 and PPARα was significantly attenuated in db/db mice treated with zopolrestat or AR shRNA. Further, in comparison with the untreated db/db mice, the hepatic mRNA expression of Aco and ApoA5, two target genes for PPARα, was increased by 93% (P < 0.05) and 73% (P < 0.05) in zopolrestat-treated mice, respectively. Together, these data indicate that inhibition of AR might lead to significant amelioration in hyperglycemia-induced dyslipidemia and nonalcoholic fatty liver disease.
doi:10.1155/2012/789730
PMCID: PMC3216305  PMID: 22110479
23.  Decreased Level of Nurr1 in Heterozygous Young Adult Mice Leads to Exacerbated Acute and Long-Term Toxicity after Repeated Methamphetamine Exposure 
PLoS ONE  2010;5(12):e15193.
The abuse of psychostimulants, such as methamphetamine (METH), is prevalent in young adults and could lead to long-term adaptations in the midbrain dopamine system in abstinent human METH abusers. Nurr1 is a gene that is critical for the survival and maintenance of dopaminergic neurons and has been implicated in dopaminergic neuron related disorders. In this study, we examined the synergistic effects of repeated early exposure to methamphetamine in adolescence and reduction in Nurr1 gene levels. METH binge exposure in adolescence led to greater damage in the nigrostrial dopaminergic system when mice were exposed to METH binge later in life, suggesting a long-term adverse effect on the dopaminergic system. Compared to naïve mice that received METH binge treatment for the first time, mice pretreated with METH in adolescence showed a greater loss of tyrosine hydroxylase (TH) immunoreactivity in striatum, loss of THir fibers in the substantia nigra reticulata (SNr) as well as decreased dopamine transporter (DAT) level and compromised DA clearance in striatum. These effects were further exacerbated in Nurr1 heterozygous mice. Our data suggest that a prolonged adverse effect exists following adolescent METH binge exposure which may lead to greater damage to the dopaminergic system when exposed to repeated METH later in life. Furthermore, our data support that Nurr1 mutations or deficiency could be a potential genetic predisposition which may lead to higher vulnerability in some individuals.
doi:10.1371/journal.pone.0015193
PMCID: PMC2997078  PMID: 21151937
24.  Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity 
Nucleic Acids Research  2010;39(2):475-485.
Osmotic response element binding protein (OREBP) is a Rel-like transcription factor critical for cellular osmoresponses. Previous studies suggest that hypertonicity-induced accumulation of OREBP protein might be mediated by transcription activation as well as posttranscriptional mRNA stabilization or increased translation. However, the underlying mechanisms remain incompletely elucidated. Here, we report that microRNAs (miRNAs) play critical regulatory roles in hypertonicity-induced induction of OREBP. In renal medullary epithelial mIMCD3 cells, hypertonicity greatly stimulates the activity of the 3′-untranslated region of OREBP (OREBP-3′UTR). Furthermore, overexpression of OREBP-3′UTR or depletion of miRNAs by knocking-down Dicer greatly increases OREBP protein expression. On the other hand, significant alterations in miRNA expression occur rapidly in response to high NaCl exposure, with miR-200b and miR-717 being most significantly down-regulated. Moreover, increased miR-200b or miR-717 causes significant down-regulation of mRNA, protein and transcription activity of OREBP, whereas inhibition of miRNAs or disruption of the miRNA–3′UTR interactions abrogates the silencing effects. In vivo in mouse renal medulla, miR-200b and miR-717 are found to function to tune OREBP in response to renal tonicity alterations. Together, our results support the notion that miRNAs contribute to the maximal induction of OREBP to participate in cellular responses to osmotic stress in mammalian renal cells.
doi:10.1093/nar/gkq818
PMCID: PMC3025551  PMID: 20852262
25.  NMDA Receptors on Non-Dopaminergic Neurons in the VTA Support Cocaine Sensitization 
PLoS ONE  2010;5(8):e12141.
Background
The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic plasticity in the mesolimbic dopamine (DA) circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA) DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1DATCre mice).
Methodology and Principal Findings
Using an additional NR1DATCre mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1DATCre mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1DATCre mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1DATCre transgenic model, and that application of an NMDAR antagonist within the VTA of NR1DATCre animals still blocks sensitization to cocaine.
Conclusions/Significance
These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1DATCre mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior.
doi:10.1371/journal.pone.0012141
PMCID: PMC2922329  PMID: 20808436

Results 1-25 (34)