PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system 
Nucleic Acids Research  2014;42(10):6532-6541.
CRISPR-Cas is an adaptive prokaryotic immune system, providing protection against viruses and other mobile genetic elements. In type I and type III CRISPR-Cas systems, CRISPR RNA (crRNA) is generated by cleavage of a primary transcript by the Cas6 endonuclease and loaded into multisubunit surveillance/effector complexes, allowing homology-directed detection and cleavage of invading elements. Highly studied CRISPR-Cas systems such as those in Escherichia coli and Pseudomonas aeruginosa have a single Cas6 enzyme that is an integral subunit of the surveillance complex. By contrast, Sulfolobus solfataricus has a complex CRISPR-Cas system with three types of surveillance complexes (Cascade/type I-A, CSM/type III-A and CMR/type III-B), five Cas6 paralogues and two different CRISPR-repeat families (AB and CD). Here, we investigate the kinetic properties of two different Cas6 paralogues from S. solfataricus. The Cas6-1 subtype is specific for CD-family CRISPR repeats, generating crRNA by multiple turnover catalysis whilst Cas6-3 has a broader specificity and also processes a non-coding RNA with a CRISPR repeat-related sequence. Deep sequencing of crRNA in surveillance complexes reveals a biased distribution of spacers derived from AB and CD loci, suggesting functional coupling between Cas6 paralogues and their downstream effector complexes.
doi:10.1093/nar/gku308
PMCID: PMC4041471  PMID: 24753403
2.  Structure of the CRISPR Interference Complex CSM Reveals Key Similarities with Cascade 
Molecular Cell  2013;52(1):124-134.
Summary
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR) system is an adaptive immune system in prokaryotes. Interference complexes encoded by CRISPR-associated (cas) genes utilize small RNAs for homology-directed detection and subsequent degradation of invading genetic elements, and they have been classified into three main types (I–III). Type III complexes share the Cas10 subunit but are subclassifed as type IIIA (CSM) and type IIIB (CMR), depending on their specificity for DNA or RNA targets, respectively. The role of CSM in limiting the spread of conjugative plasmids in Staphylococcus epidermidis was first described in 2008. Here, we report a detailed investigation of the composition and structure of the CSM complex from the archaeon Sulfolobus solfataricus, using a combination of electron microscopy, mass spectrometry, and deep sequencing. This reveals a three-dimensional model for the CSM complex that includes a helical component strikingly reminiscent of the backbone structure of the type I (Cascade) family.
Graphical Abstract
Highlights
•The CSM complex from Sulfolobus solfataricus has been purified and characterized•EM reveals a helical backbone with striking similarities to the Cascade complex•Mass spectrometry defines the subunit stoichiometry and organization of the complex•CSM subunits are modified by methylation, acetylation, and phosphorylation
doi:10.1016/j.molcel.2013.08.020
PMCID: PMC3807668  PMID: 24119402
3.  Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing 
Biochemical Journal  2013;452(Pt 2):223-230.
The competition between viruses and hosts is played out in all branches of life. Many prokaryotes have an adaptive immune system termed ‘CRISPR’ (clustered regularly interspaced short palindromic repeats) which is based on the capture of short pieces of viral DNA. The captured DNA is integrated into the genomic DNA of the organism flanked by direct repeats, transcribed and processed to generate crRNA (CRISPR RNA) that is loaded into a variety of effector complexes. These complexes carry out sequence-specific detection and destruction of invading mobile genetic elements. In the present paper, we report the structure and activity of a Cas6 (CRISPR-associated 6) enzyme (Sso1437) from Sulfolobus solfataricus responsible for the generation of unit-length crRNA species. The crystal structure reveals an unusual dimeric organization that is important for the enzyme's activity. In addition, the active site lacks the canonical catalytic histidine residue that has been viewed as an essential feature of the Cas6 family. Although several residues contribute towards catalysis, none is absolutely essential. Coupled with the very low catalytic rate constants of the Cas6 family and the plasticity of the active site, this suggests that the crRNA recognition and chaperone-like activities of the Cas6 family should be considered as equal to or even more important than their role as traditional enzymes.
doi:10.1042/BJ20130269
PMCID: PMC3652601  PMID: 23527601
antiviral defence; Cas6; clustered regularly interspaced short palindromic repeats (CRISPR); ribonuclease; Sulfolobus; CRISPR, clustered regularly interspaced short palindromic repeats; Cas, CRISPR-associated; crRNA, CRISPR RNA; Ni-NTA, Ni2+-nitrilotriacetate; PaCas6f, Pseudomonas aeruginosa Cas6; PfuCas6, Pyrococcus furiosus Cas6; RAMP, repeat-associated mysterious protein; RMSD, root mean square deviation; RRM, RNA-recognition motif; SAD, single-wavelength anomalous dispersion; SsoCas6, Sulfolobus solfataricus Cas6; TBE, Tris/borate/EDTA; TEV, tobacco etch virus; TtCas6e, Thermus thermophilus Cas6
4.  Structure of the archaeal Cascade subunit Csa5 
RNA Biology  2013;10(5):762-769.
The Cascade complex for CRISPR-mediated antiviral immunity uses CRISPR RNA (crRNA) to target invading DNA species from mobile elements such as viruses, leading to their destruction. The core of the Cascade effector complex consists of the Cas5 and Cas7 subunits, which are widely conserved in prokaryotes. Cas7 binds crRNA and forms the helical backbone of Cascade. Many archaea encode a version of the Cascade complex (denoted Type I-A) that includes a Csa5 (or small) subunit, which interacts weakly with the core proteins. Here, we report the crystal structure of the Csa5 protein from Sulfolobus solfataricus. Csa5 comprises a conserved α-helical domain with a small insertion consisting of a weakly conserved β-strand domain. In the crystal, the Csa5 monomers have multimerized into infinite helical threads. At each interface is a strictly conserved intersubunit salt bridge, deletion of which disrupts multimerization. Structural analysis indicates a shared evolutionary history among the small subunits of the CRISPR effector complexes. The same α-helical domain is found in the C-terminal domain of Cse2 (from Type I-E Cascade), while the N-terminal domain of Cse2 is found in Cmr5 of the CMR (Type III-B) effector complex. As Cmr5 shares no match with Csa5, two possibilities present themselves: selective domain loss from an ancestral Cse2 to create two new subfamilies or domain fusion of two separate families to create a new Cse2 family. A definitive answer awaits structural studies of further small subunits from other CRISPR effector complexes.
doi:10.4161/rna.23854
PMCID: PMC3737334  PMID: 23846216
CRISPR; Csa5; structure; CRISPR interference; Cascade
5.  Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity 
Molecular cell  2012;45(3):303-313.
Summary
The prokaryotic Clusters of Regularly Interspaced Palindromic Repeats (CRISPR) system utilizes genomically-encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse “payload” of targeting crRNA. The crystal structure of Cmr7 and low resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endonucleolytic reaction at UA dinucleotides. This activity is dependent on the 8-nucleotide repeat-derived 5′ sequence in the crRNA, but not on the presence of a proto-spacer associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.
doi:10.1016/j.molcel.2011.12.013
PMCID: PMC3381847  PMID: 22227115
6.  A model for 3-methyladenine recognition by 3-methyladenine DNA glycosylase I (TAG) from Staphylococcus aureus  
The structure of 3-methyladenine DNA glycosylase I in complex with 3-methyladenine is reported.
The removal of chemically damaged DNA bases such as 3-methyladenine (3-­MeA) is an essential process in all living organisms and is catalyzed by the enzyme 3-MeA DNA glycosylase I. A key question is how the enzyme selectively recognizes the alkylated 3-MeA over the much more abundant adenine. The crystal structures of native and Y16F-mutant 3-MeA DNA glycosylase I from Staphylococcus aureus in complex with 3-MeA are reported to 1.8 and 2.2 Å resolution, respectively. Isothermal titration calorimetry shows that protonation of 3-MeA decreases its binding affinity, confirming previous fluorescence studies that show that charge–charge recognition is not critical for the selection of 3-MeA over adenine. It is hypothesized that the hydrogen-bonding pattern of Glu38 and Tyr16 of 3-MeA DNA glycosylase I with a particular tautomer unique to 3-MeA contributes to recognition and selection.
doi:10.1107/S1744309112016363
PMCID: PMC3370894  PMID: 22684054
3-methyladenine DNA glycosylase I; fluorescence measurements; ITC; DNA repair; recognition
7.  Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus 
BMC Systems Biology  2011;5:68.
Background
Staphylococcus aureus is a major human pathogen and strains resistant to existing treatments continue to emerge. Development of novel treatments is therefore important. Antimicrobial peptides represent a source of potential novel antibiotics to combat resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA). A promising antimicrobial peptide is ranalexin, which has potent activity against Gram-positive bacteria, and particularly S. aureus. Understanding mode of action is a key component of drug discovery and network biology approaches enable a global, integrated view of microbial physiology, including mechanisms of antibiotic killing. We developed a systems-wide functional association network approach to integrate proteome and transcriptome profiles, enabling study of drug resistance and mode of action.
Results
The functional association network was constructed by Bayesian logistic regression, providing a framework for identification of antimicrobial peptide (ranalexin) response modules from S. aureus MRSA-252 transcriptome and proteome profiling. These signatures of ranalexin treatment revealed multiple killing mechanisms, including cell wall activity. Cell wall effects were supported by gene disruption and osmotic fragility experiments. Furthermore, twenty-two novel virulence factors were inferred, while the VraRS two-component system and PhoU-mediated persister formation were implicated in MRSA tolerance to cationic antimicrobial peptides.
Conclusions
This work demonstrates a powerful integrative approach to study drug resistance and mode of action. Our findings are informative to the development of novel therapeutic strategies against Staphylococcus aureus and particularly MRSA.
doi:10.1186/1752-0509-5-68
PMCID: PMC3123200  PMID: 21569391
8.  Purification, crystallization and data collection of methicillin-resistant Staphylococcus aureus Sar2676, a pantothenate synthetase 
Sar2676, a pantothenate synthetase with a molecular weight of 31 419 Da from methicillin-resistant Staphylococcus aureus, has been expressed, purified and crystallized at 293 K.
Sar2676, a pantothenate synthetase with a molecular weight of 31 419 Da from methicillin-resistant Staphylococcus aureus, has been expressed, purified and crystallized at 293 K. The protein crystallizes in a primitive triclinic lattice, with unit-cell parameters a = 45.3, b = 60.5, c = 117.6 Å, α = 87.2, β = 81.2, γ = 68.4°. A complete data set has been collected to 2.3 Å resolution at the ESRF. Consideration of the likely solvent content suggested the asymmetric unit to contain four molecules. This has been confirmed by molecular-replacement phasing calculations, which give a solution with four monomers using a monomer of pantothenate synthetase from Escherichia coli (PDB code 1iho), which is 41% identical to Sar2676, as a search model.
doi:10.1107/S1744309107020362
PMCID: PMC2335074  PMID: 17554169
Sar2676; pantothenate synthetase; methicillin-resistant Staphylococcus aureus
9.  Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase 
As part of work on S. aureus, the crystallization of Sar2028, a protein that is upregulated in MRSA, is reported.
Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase with a molecular weight of 48 168 Da, was overexpressed in methicillin-resistant Staphylococcus aureus compared with a methicillin-sensitive strain. The protein was expressed in Escherichia coli, purified and crystallized. The protein crystallized in a primitive orthorhombic Laue group with unit-cell parameters a = 83.6, b = 91.3, c = 106.0 Å, α = β = γ = 90°. Analysis of the systematic absences along the three principal axes indicated the space group to be P212121. A complete data set was collected to 2.5 Å resolution.
doi:10.1107/S1744309107019562
PMCID: PMC2335000  PMID: 17565195
Sar2028; Staphylococcus aureus; aminotransferases
10.  Assessment of the multidisciplinary education for a major change in clinical practice; a prospective cohort study 
Background
New approaches are often introduced to the neonatal intensive care unit (NICU) and other areas of the health service in either a haphazard or cataclysmic fashion. The needs of staff education are often addressed incompletely or too late. Rarely is education assessed after the introduction of a major change. We changed the basis of our NICU respiratory support. We conducted a major educational and support program before this intervention. This study documented and assessed the educational components of this change in our health service provision.
Methods
Senior medical and nursing staff attended training abroad and an education program was applied for one year prior to the change. Multidisciplinary educational support for doctors, nurses and allied health was continued after the change. Assessment was by anonymous questionnaire, prior to change, at one and at nine months. Our hypothesis was that dissatisfaction with education would be greatest at one month.
Results
Both theory education and practical education aspects of the new approach were rated as good to very good and this did not change with time. Difficulty of applying the technique was rated as ambivalent initially but decreased significantly over 9 months until it was rated easy to very easy (p < 0.001). Over all, the change was rated by staff as beneficial, both at the end of the education period and at nine months, with no decrease at one month.
Conclusion
If education and training reaches all staff, with a system of mutual and continued support, even large changes in clinical practice can be achieved without the dissatisfaction with the educational process that is often otherwise seen.
doi:10.1186/1472-6963-9-28
PMCID: PMC2645385  PMID: 19208262

Results 1-10 (10)