PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Structure of the secretion domain of HxuA from Haemophilus influenzae  
The structure of the secretion domain of HxuA from H. influenzae has been determined to 1.5 Å resolution.
Haemophilus influenzae HxuA is a cell-surface protein with haem–haemopexin binding activity which is key to haem acquisition from haemopexin and thus is one of the potential sources of haem for this microorganism. HxuA is secreted by its specific transporter HxuB. HxuA/HxuB belongs to the so-called two-partner secretion systems (TPSs) that are characterized by a conserved N-­terminal domain in the secreted protein which is essential for secretion. Here, the 1.5 Å resolution structure of the secretion domain of HxuA, HxuA301, is reported. The structure reveals that HxuA301 folds into a β-helix domain with two extra-helical motifs, a four-stranded β-sheet and an N-terminal cap. Comparisons with other structures of TpsA secretion domains are reported. They reveal that despite limited sequence identity, strong structural similarities are found between the β-helix motifs, consistent with the idea that the TPS domain plays a role not only in the interaction with the specific TpsB partners but also as the scaffold initiating progressive folding of the TpsA proteins at the bacterial surface.
doi:10.1107/S174430911302962X
PMCID: PMC3855712  PMID: 24316822
HxuA; TPS; secretion system; β-helix
2.  A Salmonella Type Three Secretion Effector/Chaperone Complex Adopts a Hexameric Ring-Like Structure 
Journal of Bacteriology  2014;197(4):688-698.
Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.
doi:10.1128/JB.02294-14
PMCID: PMC4334183  PMID: 25404693
3.  Conserved Omp85 lid-lock structure and substrate recognition in FhaC 
Nature Communications  2015;6:7452.
Omp85 proteins mediate translocation of polypeptide substrates across and into cellular membranes. They share a common architecture comprising substrate-interacting POTRA domains, a C-terminal 16-stranded β-barrel pore and two signature motifs located on the inner barrel wall and at the tip of the extended L6 loop. The observation of two distinct conformations of the L6 loop in the available Omp85 structures previously suggested a functional role of conformational changes in L6 in the Omp85 mechanism. Here we present a 2.5 Å resolution structure of a variant of the Omp85 secretion protein FhaC, in which the two signature motifs interact tightly and form the conserved ‘lid lock'. Reanalysis of previous structural data shows that L6 adopts the same, conserved resting state position in all available Omp85 structures. The FhaC variant structure further reveals a competitive mechanism for the regulation of substrate binding mediated by the linker to the N-terminal plug helix H1.
The fundamental processes of protein insertion and translocation at the outer membrane are mediated by Omp85 proteins. Here the authors report structures of the translocase FhaC, showing that the critical L6 loop adopts a conformation similar to that of related insertases; establishing a common structural basis for Omp85 function.
doi:10.1038/ncomms8452
PMCID: PMC4490367  PMID: 26058369
4.  Characterization of ERM transactivation domain binding to the ACID/PTOV domain of the Mediator subunit MED25 
Nucleic Acids Research  2015;43(14):7110-7121.
The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38–68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM–MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator–transactivator interactions.
doi:10.1093/nar/gkv650
PMCID: PMC4538835  PMID: 26130716
5.  Structural insights into ChpT, an essential dimeric histidine phosphotransferase regulating the cell cycle in Caulobacter crescentus  
The cell-cycle regulator ChpT of C. crescentus is a dimeric histidine phosphotransferase that resembles the typical structure of histidine kinases.
Two-component and phosphorelay signal-transduction proteins are crucial for bacterial cell-cycle regulation in Caulobacter crescentus. ChpT is an essential histidine phosphotransferase that controls the activity of the master cell-cycle regulator CtrA by phosphorylation. Here, the 2.2 Å resolution crystal structure of ChpT is reported. ChpT is a homodimer and adopts the domain architecture of the intracellular part of class I histidine kinases. Each subunit consists of two distinct domains: an N-terminal helical hairpin domain and a C-terminal α/β domain. The two N-terminal domains are adjacent within the dimer, forming a four-helix bundle. The ChpT C-terminal domain adopts an atypical Bergerat ATP-binding fold.
doi:10.1107/S1744309112033064
PMCID: PMC3433190  PMID: 22949187
bacterial cell cycle; Caulobacter crescentus; histidine kinases; histidine phosphotransferases
6.  Single-Molecule Force Spectroscopy of Mycobacterial Adhesin-Adhesin Interactions▿  
Journal of Bacteriology  2007;189(24):8801-8806.
The heparin-binding hemagglutinin (HBHA) is one of the few virulence factors identified for Mycobacterium tuberculosis. It is a surface-associated adhesin that expresses a number of different activities, including mycobacterial adhesion to nonphagocytic cells and microbial aggregation. Previous evidence indicated that HBHA is likely to form homodimers or homopolymers via a predicted coiled-coil region located within the N-terminal portion of the molecule. Here, we used single-molecule atomic-force microscopy to measure individual homophilic HBHA-HBHA interaction forces. Force curves recorded between tips and supports derivatized with HBHA proteins exposing their N-terminal domains showed a bimodal distribution of binding forces reflecting the formation of dimers or multimers. Moreover, the binding peaks showed elongation forces that were consistent with the unfolding of α-helical coiled-coil structures. By contrast, force curves obtained for proteins exposing their lysine-rich C-terminal domains showed a broader distribution of binding events, suggesting that they originate primarily from intermolecular electrostatic bridges between cationic and anionic residues rather than from specific coiled-coil interactions. Notably, similar homophilic HBHA-HBHA interactions were demonstrated on live mycobacteria producing HBHA, while they were not observed on an HBHA-deficient mutant. Together with the fact that HBHA mediates bacterial aggregation, these observations suggest that the single homophilic HBHA interactions measured here reflect the formation of multimers that may promote mycobacterial aggregation.
doi:10.1128/JB.01299-07
PMCID: PMC2168608  PMID: 17933894
7.  Visualization of TGN to Endosome Trafficking through Fluorescently Labeled MPR and AP-1 in Living CellsV⃞ 
Molecular Biology of the Cell  2003;14(1):142-155.
We have stably expressed in HeLa cells a chimeric protein made of the green fluorescent protein (GFP) fused to the transmembrane and cytoplasmic domains of the mannose 6-phosphate/insulin like growth factor II receptor in order to study its dynamics in living cells. At steady state, the bulk of this chimeric protein (GFP-CI-MPR) localizes to the trans-Golgi network (TGN), but significant amounts are also detected in peripheral, tubulo-vesicular structures and early endosomes as well as at the plasma membrane. Time-lapse videomicroscopy shows that the GFP-CI-MPR is ubiquitously detected in tubular elements that detach from the TGN and move toward the cell periphery, sometimes breaking into smaller tubular fragments. The formation of the TGN-derived tubules is temperature dependent, requires the presence of intact microtubule and actin networks, and is regulated by the ARF-1 GTPase. The TGN-derived tubules fuse with peripheral, tubulo-vesicular structures also containing the GFP-CI-MPR. These structures are highly dynamic, fusing with each other as well as with early endosomes. Time-lapse videomicroscopy performed on HeLa cells coexpressing the CFP-CI-MPR and the AP-1 complex whose γ-subunit was fused to YFP shows that AP-1 is present not only on the TGN and peripheral CFP-CI-MPR containing structures but also on TGN-derived tubules containing the CFP-CI-MPR. The data support the notion that tubular elements can mediate MPR transport from the TGN to a peripheral, tubulo-vesicular network dynamically connected with the endocytic pathway and that the AP-1 coat may facilitate MPR sorting in the TGN and endosomes.
doi:10.1091/mbc.E02-06-0338
PMCID: PMC140234  PMID: 12529433

Results 1-7 (7)