PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
2.  PubChem3D: conformer ensemble accuracy 
Background
PubChem is a free and publicly available resource containing substance descriptions and their associated biological activity information. PubChem3D is an extension to PubChem containing computationally-derived three-dimensional (3-D) structures of small molecules. All the tools and services that are a part of PubChem3D rely upon the quality of the 3-D conformer models. Construction of the conformer models currently available in PubChem3D involves a clustering stage to sample the conformational space spanned by the molecule. While this stage allows one to downsize the conformer models to more manageable size, it may result in a loss of the ability to reproduce experimentally determined “bioactive” conformations, for example, found for PDB ligands. This study examines the extent of this accuracy loss and considers its effect on the 3-D similarity analysis of molecules.
Results
The conformer models consisting of up to 100,000 conformers per compound were generated for 47,123 small molecules whose structures were experimentally determined, and the conformers in each conformer model were clustered to reduce the size of the conformer model to a maximum of 500 conformers per molecule. The accuracy of the conformer models before and after clustering was evaluated using five different measures: root-mean-square distance (RMSD), shape-optimized shape-Tanimoto (STST-opt) and combo-Tanimoto (ComboTST-opt), and color-optimized color-Tanimoto (CTCT-opt) and combo-Tanimoto (ComboTCT-opt). On average, the effect of clustering decreased the conformer model accuracy, increasing the conformer ensemble’s RMSD to the bioactive conformer (by 0.18 ± 0.12 Å), and decreasing the STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt scores (by 0.04 ± 0.03, 0.16 ± 0.09, 0.09 ± 0.05, and 0.15 ± 0.09, respectively).
Conclusion
This study shows the RMSD accuracy performance of the PubChem3D conformer models is operating as designed. In addition, the effect of PubChem3D sampling on 3-D similarity measures shows that there is a linear degradation of average accuracy with respect to molecular size and flexibility. Generally speaking, one can likely expect the worst-case minimum accuracy of 90% or more of the PubChem3D ensembles to be 0.75, 1.09, 0.43, and 1.13, in terms of STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt, respectively. This expected accuracy improves linearly as the molecule becomes smaller or less flexible.
doi:10.1186/1758-2946-5-1
PMCID: PMC3547714  PMID: 23289532
3.  Effects of multiple conformers per compound upon 3-D similarity search and bioassay data analysis 
Background
To improve the utility of PubChem, a public repository containing biological activities of small molecules, the PubChem3D project adds computationally-derived three-dimensional (3-D) descriptions to the small-molecule records contained in the PubChem Compound database and provides various search and analysis tools that exploit 3-D molecular similarity. Therefore, the efficient use of PubChem3D resources requires an understanding of the statistical and biological meaning of computed 3-D molecular similarity scores between molecules.
Results
The present study investigated effects of employing multiple conformers per compound upon the 3-D similarity scores between ten thousand randomly selected biologically-tested compounds (10-K set) and between non-inactive compounds in a given biological assay (156-K set). When the “best-conformer-pair” approach, in which a 3-D similarity score between two compounds is represented by the greatest similarity score among all possible conformer pairs arising from a compound pair, was employed with ten diverse conformers per compound, the average 3-D similarity scores for the 10-K set increased by 0.11, 0.09, 0.15, 0.16, 0.07, and 0.18 for STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt, respectively, relative to the corresponding averages computed using a single conformer per compound. Interestingly, the best-conformer-pair approach also increased the average 3-D similarity scores for the non-inactive–non-inactive (NN) pairs for a given assay, by comparable amounts to those for the random compound pairs, although some assays showed a pronounced increase in the per-assay NN-pair 3-D similarity scores, compared to the average increase for the random compound pairs.
Conclusion
These results suggest that the use of ten diverse conformers per compound in PubChem bioassay data analysis using 3-D molecular similarity is not expected to increase the separation of non-inactive from random and inactive spaces “on average”, although some assays show a noticeable separation between the non-inactive and random spaces when multiple conformers are used for each compound. The present study is a critical next step to understand effects of conformational diversity of the molecules upon the 3-D molecular similarity and its application to biological activity data analysis in PubChem. The results of this study may be helpful to build search and analysis tools that exploit 3-D molecular similarity between compounds archived in PubChem and other molecular libraries in a more efficient way.
doi:10.1186/1758-2946-4-28
PMCID: PMC3537644  PMID: 23134593
4.  On the need for an international effort to capture, share and use crystallization screening data 
Development of an ontology for the description of crystallization experiments and results is proposed.
When crystallization screening is conducted many outcomes are observed but typically the only trial recorded in the literature is the condition that yielded the crystal(s) used for subsequent diffraction studies. The initial hit that was optimized and the results of all the other trials are lost. These missing results contain information that would be useful for an improved general understanding of crystallization. This paper provides a report of a crystallization data exchange (XDX) workshop organized by several international large-scale crystallization screening laboratories to discuss how this information may be captured and utilized. A group that administers a significant fraction of the world’s crystallization screening results was convened, together with chemical and structural data informaticians and computational scientists who specialize in creating and analysing large disparate data sets. The development of a crystallization ontology for the crystallization community was proposed. This paper (by the attendees of the workshop) provides the thoughts and rationale leading to this conclusion. This is brought to the attention of the wider audience of crystallographers so that they are aware of these early efforts and can contribute to the process going forward.
doi:10.1107/S1744309112002618
PMCID: PMC3310524  PMID: 22442216
crystallization screening data; crystallization ontology
5.  Automated annotation of chemical names in the literature with tunable accuracy 
Background
A significant portion of the biomedical and chemical literature refers to small molecules. The accurate identification and annotation of compound name that are relevant to the topic of the given literature can establish links between scientific publications and various chemical and life science databases. Manual annotation is the preferred method for these works because well-trained indexers can understand the paper topics as well as recognize key terms. However, considering the hundreds of thousands of new papers published annually, an automatic annotation system with high precision and relevance can be a useful complement to manual annotation.
Results
An automated chemical name annotation system, MeSH Automated Annotations (MAA), was developed to annotate small molecule names in scientific abstracts with tunable accuracy. This system aims to reproduce the MeSH term annotations on biomedical and chemical literature that would be created by indexers. When comparing automated free text matching to those indexed manually of 26 thousand MEDLINE abstracts, more than 40% of the annotations were false-positive (FP) cases. To reduce the FP rate, MAA incorporated several filters to remove "incorrect" annotations caused by nonspecific, partial, and low relevance chemical names. In part, relevance was measured by the position of the chemical name in the text. Tunable accuracy was obtained by adding or restricting the sections of the text scanned for chemical names. The best precision obtained was 96% with a 28% recall rate. The best performance of MAA, as measured with the F statistic was 66%, which favorably compares to other chemical name annotation systems.
Conclusions
Accurate chemical name annotation can help researchers not only identify important chemical names in abstracts, but also match unindexed and unstructured abstracts to chemical records. The current work is tested against MEDLINE, but the algorithm is not specific to this corpus and it is possible that the algorithm can be applied to papers from chemical physics, material, polymer and environmental science, as well as patents, biological assay descriptions and other textual data.
doi:10.1186/1758-2946-3-52
PMCID: PMC3281788  PMID: 22107874
6.  PubChem3D: a new resource for scientists 
Background
PubChem is an open repository for small molecules and their experimental biological activity. PubChem integrates and provides search, retrieval, visualization, analysis, and programmatic access tools in an effort to maximize the utility of contributed information. There are many diverse chemical structures with similar biological efficacies against targets available in PubChem that are difficult to interrelate using traditional 2-D similarity methods. A new layer called PubChem3D is added to PubChem to assist in this analysis.
Description
PubChem generates a 3-D conformer model description for 92.3% of all records in the PubChem Compound database (when considering the parent compound of salts). Each of these conformer models is sampled to remove redundancy, guaranteeing a minimum (non-hydrogen atom pair-wise) RMSD between conformers. A diverse conformer ordering gives a maximal description of the conformational diversity of a molecule when only a subset of available conformers is used. A pre-computed search per compound record gives immediate access to a set of 3-D similar compounds (called "Similar Conformers") in PubChem and their respective superpositions. Systematic augmentation of PubChem resources to include a 3-D layer provides users with new capabilities to search, subset, visualize, analyze, and download data.
A series of retrospective studies help to demonstrate important connections between chemical structures and their biological function that are not obvious using 2-D similarity but are readily apparent by 3-D similarity.
Conclusions
The addition of PubChem3D to the existing contents of PubChem is a considerable achievement, given the scope, scale, and the fact that the resource is publicly accessible and free. With the ability to uncover latent structure-activity relationships of chemical structures, while complementing 2-D similarity analysis approaches, PubChem3D represents a new resource for scientists to exploit when exploring the biological annotations in PubChem.
doi:10.1186/1758-2946-3-32
PMCID: PMC3269824  PMID: 21933373
7.  PubChem3D: Biologically relevant 3-D similarity 
Background
The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools.
Results
The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all) from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem), further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon.
The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN) pairs and the noninactive-inactive (NI) pairs to represent comparison of the "active/active" and "active/inactive" spaces, respectively, each of the 1,389 biological assays was examined by their 3-D similarity score differences between the NN and NI pairs and analyzed across all assays and by assay category types. While a consistent trend of separation was observed, this result was not statistically unambiguous after considering the respective standard deviations. While not all "actives" in a biological assay are amenable to this type of analysis, e.g., due to different mechanisms of action or binding configurations, the ambiguous separation may also be due to employing a single conformer per compound in this study. With that said, there were a subset of biological assays where a clear separation between the NN and NI pairs found. In addition, use of combo Tanimoto (ComboT) alone, independent of superposition optimization type, appears to be the most efficient 3-D score type in identifying these cases.
Conclusion
This study provides a statistical guideline for analyzing biological assay data in terms of 3-D similarity and PubChem structure-activity analysis tools. When using a single conformer per compound, a relatively small number of assays appear to be able to separate "active/active" space from "active/inactive" space.
doi:10.1186/1758-2946-3-26
PMCID: PMC3223603  PMID: 21781288
8.  PubChem3D: Shape compatibility filtering using molecular shape quadrupoles 
Background
PubChem provides a 3-D neighboring relationship, which involves finding the maximal shape overlap between two static compound 3-D conformations, a computationally intensive step. It is highly desirable to avoid this overlap computation, especially if it can be determined with certainty that a conformer pair cannot meet the criteria to be a 3-D neighbor. As such, PubChem employs a series of pre-filters, based on the concept of volume, to remove approximately 65% of all conformer neighbor pairs prior to shape overlap optimization. Given that molecular volume, a somewhat vague concept, is rather effective, it leads one to wonder: can the existing PubChem 3-D neighboring relationship, which consists of billions of shape similar conformer pairs from tens of millions of unique small molecules, be used to identify additional shape descriptor relationships? Or, put more specifically, can one place an upper bound on shape similarity using other "fuzzy" shape-like concepts like length, width, and height?
Results
Using a basis set of 4.18 billion 3-D neighbor pairs identified from single conformer per compound neighboring of 17.1 million molecules, shape descriptors were computed for all conformers. These steric shape descriptors included several forms of molecular volume and shape quadrupoles, which essentially embody the length, width, and height of a conformer. For a given 3-D neighbor conformer pair, the volume and each quadrupole component (Qx, Qy, and Qz) were binned and their frequency of occurrence was examined. Per molecular volume type, this effectively produced three different maps, one per quadrupole component (Qx, Qy, and Qz), of allowed values for the similarity metric, shape Tanimoto (ST) ≥ 0.8.
The efficiency of these relationships (in terms of true positive, true negative, false positive and false negative) as a function of ST threshold was determined in a test run of 13.2 billion conformer pairs not previously considered by the 3-D neighbor set. At an ST ≥ 0.8, a filtering efficiency of 40.4% of true negatives was achieved with only 32 false negatives out of 24 million true positives, when applying the separate Qx, Qy, and Qz maps in a series (Qxyz). This efficiency increased linearly as a function of ST threshold in the range 0.8-0.99. The Qx filter was consistently the most efficient followed by Qy and then by Qz. Use of a monopole volume showed the best overall performance, followed by the self-overlap volume and then by the analytic volume.
Application of the monopole-based Qxyz filter in a "real world" test of 3-D neighboring of 4,218 chemicals of biomedical interest against 26.1 million molecules in PubChem reduced the total CPU cost of neighboring by between 24-38% and, if used as the initial filter, removed from consideration 48.3% of all conformer pairs at almost negligible computational overhead.
Conclusion
Basic shape descriptors, such as those embodied by size, length, width, and height, can be highly effective in identifying shape incompatible compound conformer pairs. When performing a 3-D search using a shape similarity cut-off, computation can be avoided by identifying conformer pairs that cannot meet the result criteria. Applying this methodology as a filter for PubChem 3-D neighboring computation, an improvement of 31% was realized, increasing the average conformer pair throughput from 154,000 to 202,000 per second per CPU core.
doi:10.1186/1758-2946-3-25
PMCID: PMC3158422  PMID: 21774809
9.  PubChem3D: Similar conformers 
Background
PubChem is a free and open public resource for the biological activities of small molecules. With many tens of millions of both chemical structures and biological test results, PubChem is a sizeable system with an uneven degree of available information. Some chemical structures in PubChem include a great deal of biological annotation, while others have little to none. To help users, PubChem pre-computes "neighboring" relationships to relate similar chemical structures, which may have similar biological function. In this work, we introduce a "Similar Conformers" neighboring relationship to identify compounds with similar 3-D shape and similar 3-D orientation of functional groups typically used to define pharmacophore features.
Results
The first two diverse 3-D conformers of 26.1 million PubChem Compound records were compared to each other, using a shape Tanimoto (ST) of 0.8 or greater and a color Tanimoto (CT) of 0.5 or greater, yielding 8.16 billion conformer neighbor pairs and 6.62 billion compound neighbor pairs, with an average of 253 "Similar Conformers" compound neighbors per compound. Comparing the 3-D neighboring relationship to the corresponding 2-D neighboring relationship ("Similar Compounds") for molecules such as caffeine, aspirin, and morphine, one finds unique sets of related chemical structures, providing additional significant biological annotation. The PubChem 3-D neighboring relationship is also shown to be able to group a set of non-steroidal anti-inflammatory drugs (NSAIDs), despite limited PubChem 2-D similarity.
In a study of 4,218 chemical structures of biomedical interest, consisting of many known drugs, using more diverse conformers per compound results in more 3-D compound neighbors per compound; however, the overlap of the compound neighbor lists per conformer also increasingly resemble each other, being 38% identical at three conformers and 68% at ten conformers. Perhaps surprising is that the average count of conformer neighbors per conformer increases rather slowly as a function of diverse conformers considered, with only a 70% increase for a ten times growth in conformers per compound (a 68-fold increase in the conformer pairs considered).
Neighboring 3-D conformers on the scale performed, if implemented naively, is an intractable problem using a modest sized compute cluster. Methodology developed in this work relies on a series of filters to prevent performing 3-D superposition optimization, when it can be determined that two conformers cannot possibly be a neighbor. Most filters are based on Tanimoto equation volume constraints, avoiding incompatible conformers; however, others consider preliminary superposition between conformers using reference shapes.
Conclusion
The "Similar Conformers" 3-D neighboring relationship locates similar small molecules of biological interest that may go unnoticed when using traditional 2-D chemical structure graph-based methods, making it complementary to such methodologies. The computational cost of 3-D similarity methodology on a wide scale, such as PubChem contents, is a considerable issue to overcome. Using a series of efficient filters, an effective throughput rate of more than 150,000 conformers per second per processor core was achieved, more than two orders of magnitude faster than without filtering.
doi:10.1186/1758-2946-3-13
PMCID: PMC3120778  PMID: 21554721
10.  PubChem3D: Diversity of shape 
Background
The shape diversity of 16.4 million biologically relevant molecules from the PubChem Compound database and their 1.46 billion diverse conformers was explored as a function of molecular volume.
Results
The diversity of shape space was investigated by determining the shape similarity threshold to achieve a maximum on the count of reference shapes per unit of conformer volume. The rate of growth in shape space, as represented by a decreasing shape similarity threshold, was found to be remarkably smooth as a function of volume. There was no apparent correlation between the count of conformers per unit volume and their diversity, meaning that a single reference shape can describe the shape space of many chemical structures. The ability of a volume to describe the shape space of lesser volumes was also examined. It was shown that a given volume was able to describe 40-70% of the shape diversity of lesser volumes, for the majority of the volume range considered in this study.
Conclusion
The relative growth of shape diversity as a function of volume and shape similarity is surprisingly uniform. Given the distribution of chemicals in PubChem versus what is theoretically synthetically possible, the results from this analysis should be considered a conservative estimate to the true diversity of shape space.
doi:10.1186/1758-2946-3-9
PMCID: PMC3072936  PMID: 21418625
11.  PubChem3D: Conformer generation 
Background
PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It is also desirable to relate theoretical 3-D descriptions of chemical structures to experimental biological activity. As such, it is important to be assured that the theoretical conformer models can reproduce experimentally determined bioactive conformations. In the present study, we investigate the effects of three primary conformer generation parameters (the fragment sampling rate, the energy window size, and force field variant) upon the accuracy of theoretical conformer models, and determined optimal settings for PubChem3D conformer model generation and conformer sampling.
Results
Using the software package OMEGA from OpenEye Scientific Software, Inc., theoretical 3-D conformer models were generated for 25,972 small-molecule ligands, whose 3-D structures were experimentally determined. Different values for primary conformer generation parameters were systematically tested to find optimal settings. Employing a greater fragment sampling rate than the default did not improve the accuracy of the theoretical conformer model ensembles. An ever increasing energy window did increase the overall average accuracy, with rapid convergence observed at 10 kcal/mol and 15 kcal/mol for model building and torsion search, respectively; however, subsequent study showed that an energy threshold of 25 kcal/mol for torsion search resulted in slightly improved results for larger and more flexible structures. Exclusion of coulomb terms from the 94s variant of the Merck molecular force field (MMFF94s) in the torsion search stage gave more accurate conformer models at lower energy windows. Overall average accuracy of reproduction of bioactive conformations was remarkably linear with respect to both non-hydrogen atom count ("size") and effective rotor count ("flexibility"). Using these as independent variables, a regression equation was developed to predict the RMSD accuracy of a theoretical ensemble to reproduce bioactive conformations. The equation was modified to give a minimum RMSD conformer sampling value to help ensure that 90% of the sampled theoretical models should contain at least one conformer within the RMSD sampling value to a "bioactive" conformation.
Conclusion
Optimal parameters for conformer generation using OMEGA were explored and determined. An equation was developed that provides an RMSD sampling value to use that is based on the relative accuracy to reproduce bioactive conformations. The optimal conformer generation parameters and RMSD sampling values determined are used by the PubChem3D project to generate theoretical conformer models.
doi:10.1186/1758-2946-3-4
PMCID: PMC3042967  PMID: 21272340
12.  The PubChem chemical structure sketcher 
PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects.
doi:10.1186/1758-2946-1-20
PMCID: PMC2820498  PMID: 20298522

Results 1-12 (12)