PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
more »
Document Types
1.  Differential Localization of the Streptococcal Accessory Sec Components and Implications for Substrate Export 
Journal of Bacteriology  2013;195(4):682-695.
The accessory Sec system of Streptococcus gordonii is comprised of SecY2, SecA2, and five proteins (Asp1 through -5) that are required for the export of a serine-rich glycoprotein, GspB. We have previously shown that a number of the Asps interact with GspB, SecA2, or each other. To further define the roles of these Asps in export, we examined their subcellular localization in S. gordonii and in Escherichia coli expressing the streptococcal accessory Sec system. In particular, we assessed how the locations of these accessory Sec proteins were altered by the presence of other components. Using fluorescence microscopy, we found in E. coli that SecA2 localized within multiple foci at the cell membrane, regardless of whether other accessory Sec proteins were expressed. Asp2 alone localized to the cell poles but formed a similar punctate pattern at the membrane when SecA2 was present. Asp1 and Asp3 localized diffusely in the cytosol when expressed alone or with SecA2. However, these proteins redistributed to the membrane in a punctate arrangement when all of the accessory Sec components were present. Cell fractionation studies with S. gordonii further corroborated these microscopy results. Collectively, these findings indicate that Asp1 to -3 are not integral membrane proteins that form structural parts of the translocation channel. Instead, SecA2 serves as a docking site for Asp2, which in turn attracts a complex of Asp1 and Asp3 to the membrane. These protein interactions may be important for the trafficking of GspB to the cell membrane and its subsequent translocation.
doi:10.1128/JB.01742-12
PMCID: PMC3562102  PMID: 23204472
2.  The Accessory Sec Protein Asp2 Modulates GlcNAc Deposition onto the Serine-Rich Repeat Glycoprotein GspB 
Journal of Bacteriology  2012;194(20):5564-5575.
The accessory Sec system is a specialized transport system that exports serine-rich repeat (SRR) glycoproteins of Gram-positive bacteria. This system contains two homologues of the general secretory (Sec) pathway (SecA2 and SecY2) and several other essential proteins (Asp1 to Asp5) that share no homology to proteins of known function. In Streptococcus gordonii, Asp2 is required for the transport of the SRR adhesin GspB, but its role in export is unknown. Tertiary structure predictions suggest that the carboxyl terminus of Asp2 resembles the catalytic region of numerous enzymes that function through a Ser-Asp-His catalytic triad. Sequence alignment of all Asp2 homologues identified a highly conserved pentapeptide motif (Gly-X-Ser362-X-Gly) typical of most Ser-Asp-His catalytic triads, where Ser forms the reactive residue. Site-directed mutagenesis of residues comprising the predicted catalytic triad of Asp2 of S. gordonii had no effect upon GspB transport but did result in a marked change in the electrophoretic mobility of the protein. Lectin-binding studies and monosaccharide content analysis of this altered glycoform revealed an increase in glucosamine deposition. Random mutagenesis of the Asp2 region containing this catalytic domain also disrupted GspB transport. Collectively, our findings suggest that Asp2 is a bifunctional protein that is essential for both GspB transport and correct glycosylation. The catalytic domain may be responsible for controlling the glycosylation of GspB, while other surrounding regions are functionally required for glycoprotein transport.
doi:10.1128/JB.01000-12
PMCID: PMC3458669  PMID: 22885294
4.  Asp2 and Asp3 Interact Directly with GspB, the Export Substrate of the Streptococcus gordonii Accessory Sec System▿† 
Journal of Bacteriology  2011;193(13):3165-3174.
GspB is a serine-rich glycoprotein adhesin of Streptococcus gordonii that is exported to the bacterial surface by the accessory Sec system. This dedicated export pathway is comprised of seven components (SecA2, SecY2, and five accessory Sec proteins [Asp1 to Asp5]). The latter proteins have no known homologs beyond the Asps of other species. Asp1 to Asp3 are absolutely required for export of the substrate GspB, but their roles in this process are unknown. Using copurification analysis and far-Western blotting, we found that Asp2 and Asp3 could individually bind the serine-rich repeat (SRR) domains of GspB. Deletion of both SRR regions of GspB led to a decrease in its export, suggesting that binding of the Asps to the SRR regions is important for GspB transport by the accessory Sec system. The Asps also bound a heterologous substrate for the accessory Sec system containing a slow-folding MalE variant, but they did not bind wild-type MalE. The combined results indicate that the Asps may recognize the export substrate through preferential interactions with its unstructured or unfolded regions. Glycosylation of the SRR domains on GspB prevented Asp binding, suggesting that binding of the Asps to the preprotein occurs prior to its full glycosylation. Together, these findings suggest that Asp2 and Asp3 are likely to function in part as chaperones in the early phase of GspB transport.
doi:10.1128/JB.00057-11
PMCID: PMC3133275  PMID: 21531800
5.  Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding region of the Streptococcus gordonii adhesin GspB 
The carbohydrate-binding region of GspB from S. gordonii strain M99 was crystallized in space group P212121 and data were collected to 1.3 Å resolution.
The carbohydrate-binding region of the bacterial adhesin GspB from Strepto­coccus gordonii strain M99 (GspBBR) was expressed in Escherichia coli and purified using affinity and size-exclusion chromatography. Separate sparse-matrix screening of GspBBR buffered in either 20 mM Tris pH 7.4 or 20 mM HEPES pH 7.5 resulted in different crystallographic behavior such that different precipitants, salts and additives supported crystallization of GspBBR in each buffer. While both sets of conditions supported crystal growth in space group P212121, the crystals had distinct unit-cell parameters of a = 33.3, b = 86.7, c = 117.9 Å for crystal form 1 and a = 34.6, b = 98.3, c = 99.0 Å for crystal form 2. Additive screening improved the crystals grown in both conditions such that diffraction extended to beyond 2 Å resolution. A complete data set has been collected to 1.3 Å resolution with an overall R merge value of 0.04 and an R merge value of 0.33 in the highest resolution shell.
doi:10.1107/S1744309110036535
PMCID: PMC3001660  PMID: 21045307
GspB; glycoproteins; Streptococcus gordonii; sialic acid; adhesins; endocarditis; lectins
6.  Purification, crystallization, and preliminary x-ray diffraction analysis of the carbohydrate-binding region from the Streptococcus gordonii adhesin GspB 
The carbohydrate binding region of the bacterial adhesin GspB from Streptococcus gordonii strain M99 (GspBBR) was expressed in Escherichia coli and purified using affinity and size exclusion chromatography. Separate sparse-matrix screening of GspBBR buffered in either 20 mM Tris pH 7.4 or 20 mM HEPES pH 7.5 resulted in different crystallographic behavior such that different precipitants, salts, and additives supported crystallization of GspBBR in each buffer. While both sets of conditions supported crystal growth in space group P212121, these had distinct unit cell dimensions of a=33.3 Å, b=86.6 Å, c=117.9 Å for crystal form one and a=34.6 Å, b=98.3 Å, c=99.0 Å for crystal form two. Additive screening improved the crystals grown in both conditions such that diffraction extended beyond 2 Å resolution. A complete data set has been collected to 1.3 Å resolution with an overall Rsym value of 0.04 and an Rsym value of 0.33 in the highest resolution shell.
doi:10.1107/S1744309110036535
PMCID: PMC3001660  PMID: 21045307
GspB; glycoprotein; Streptococcus gordonii; sialic acid; adhesin; endocarditis; lectin
7.  Asp3 mediates multiple protein-protein interactions within the accessory Sec system of Streptococcus gordonii 
Molecular microbiology  2010;78(2):490-505.
Summary
Bacterial binding to human platelets is an important step in the pathogenesis of infective endocarditis. Streptococcus gordonii can mediate its platelet attachment through a cell wall glycoprotein termed GspB (“gordonii surface protein B”). GspB export is mediated by a seven component accessory Sec system, containing two homologues of the general secretory pathway (SecA2 & SecY2) and five accessory Sec proteins (Asps 1 – 5). Here we show that the Asps are required for optimal export of GspB independent of the glycosylation process. Furthermore, yeast two-hybrid screening of the accessory Sec system revealed interactions occurring between Asp3 and the other components of the system. Asp3 was shown to bind SecA2, Asp1, Asp2 and itself. Mutagenesis of Asp3 identified N and C-terminal regions that are essential for GspB transport, and conserved residues within the C-terminal domain mediated Asp3 binding to other accessory Sec components. The loss of binding by Asp3 also resulted in an impaired ability of S. gordonii to secrete GspB. These studies indicate that Asp3 is a central element mediating multiple interactions among accessory Sec components that are essential for GspB transport to the cell surface.
doi:10.1111/j.1365-2958.2010.07346.x
PMCID: PMC2959127  PMID: 20807195
accessory Sec; secretion; glycoprotein; Streptococcus gordonii; Asp
8.  A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors 
PLoS Pathogens  2011;7(7):e1002112.
GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspBBR), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspBBR structure revealed that it is comprised of three independently folded subdomains or modules: 1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; 2) a second Ig-fold resembling the binding region of mammalian Siglecs; 3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIbα. Further examination of purified GspBBR-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.
Author Summary
The binding of bacteria to human platelets is thought to be important for development of infective endocarditis, a life-threatening infection of the cardiovascular system. Streptococcus gordonii is a leading cause of endocarditis. This pathogen uses a protein called GspB to attach to carbohydrates on human platelets. While this binding interaction appears to be mediated by a specific, contiguous domain within GspB, little is known about the molecular details of the interaction between GspB and the carbohydrate receptors on its human host. We therefore determined the crystal structure of the region of GspB that binds to platelet carbohydrates, both alone and in complex with a synthetic carbohydrate receptor. Using this structure as a guide, we were able to produce three strains of S. gordonii that lacked the ability to bind to platelet carbohydrates. One of these isogenic variants was studied more in-depth and lacked the ability to bind to human platelets in vitro and was reduced in virulence when tested in vivo. These studies provide the first structural information detailing the molecular interactions between any serine-rich repeat adhesin and its host receptor, and identify how different, related adhesins may have evolved different specificities for host receptors.
doi:10.1371/journal.ppat.1002112
PMCID: PMC3131266  PMID: 21765814
9.  Transport of Preproteins by the Accessory Sec System Requires a Specific Domain Adjacent to the Signal Peptide▿  
Journal of Bacteriology  2010;192(16):4223-4232.
The accessory Sec (SecA2/Y2) systems of streptococci and staphylococci are dedicated to the transport of large serine-rich repeat (SRR) glycoproteins to the bacterial cell surface. The means by which the glycosylated preproteins are selectively recognized by the accessory Sec system have not been fully characterized. In Streptococcus gordonii, the SRR glycoprotein GspB has a 90-residue amino-terminal signal sequence that is essential for transport by SecA2/Y2 but is not sufficient to mediate the transport of heterologous proteins by this specialized transporter. We now report that a preprotein must remain at least partially unfolded prior to transport by the accessory Sec system. In addition, a region of approximately 20 residues from the amino-terminal end of mature GspB (the accessory Sec transport or AST domain) is essential for SecA2/Y2-dependent transport. The replacement of several AST domain residues with glycine strongly interferes with export, which suggests that a helical conformation may be important. Analysis of GspB variants with alterations in the AST domain, in combination with the results with a SecY2 variant, indicates that the AST domain is essential both for targeting to the SecA2/Y2 translocase and for initiating translocation through the SecY2 channel. The combined results suggest a unique mechanism that ensures the transport of a single substrate by the SecA2/Y2 system.
doi:10.1128/JB.00373-10
PMCID: PMC2916413  PMID: 20562303
10.  Characterization of Streptococcus gordonii SecA2 as a Paralogue of SecA▿ †  
Journal of Bacteriology  2009;191(11):3482-3491.
The accessory Sec system of Streptococcus gordonii is essential for transport of the glycoprotein GspB to the bacterial cell surface. A key component of this dedicated transport system is SecA2. The SecA2 proteins of streptococci and staphylococci are paralogues of SecA and are presumed to have an analogous role in protein transport, but they may be specifically adapted for the transport of large, serine-rich glycoproteins. We used a combination of genetic and biochemical methods to assess whether the S. gordonii SecA2 functions similarly to SecA. Although mutational analyses demonstrated that conserved amino acids are essential for the function of SecA2, replacing such residues in one of two nucleotide binding folds had only minor effects on SecA2 function. SecA2-mediated transport is highly sensitive to azide, as is SecA-mediated transport. Comparison of the S. gordonii SecA and SecA2 proteins in vitro revealed that SecA2 can hydrolyze ATP at a rate similar to that of SecA and is comparably sensitive to azide but that the biochemical properties of these enzymes are subtly different. That is, SecA2 has a lower solubility in aqueous solutions and requires higher Mg2+ concentrations for maximal activity. In spite of the high degree of similarity between the S. gordonii paralogues, analysis of SecA-SecA2 chimeras indicates that the domains are not readily interchangeable. This suggests that specific, unique contacts between SecA2 and other components of the accessory Sec system may preclude cross-functioning with the canonical Sec system.
doi:10.1128/JB.00365-09
PMCID: PMC2681895  PMID: 19363114
11.  Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis 
Microbial pathogenesis  2008;45(4):297-301.
The direct binding of bacteria to platelets is a central interaction in the pathogenesis of infective endocarditis. GspB is a serine-rich, cell wall glycoprotein of Streptococcus gordonii that mediates the binding of this organism to human platelets in vitro. To assess the contribution of this adhesin to the pathogenesis of endocarditis, we compared the virulence of S. gordonii M99 (which expresses GspB) with an isogenic, gspB mutant (PS846) in two rat models of endovascular infection. In the first group of experiments, animals were infected intravenously with M99 or PS846, and sacrificed 72 h later, to assess levels of bacteria within cardiac vegetations, kidneys, and spleens. When inoculated with 105 CFU, rats infected with PS846 had significantly lower densities of organisms within vegetations (mean: 3.84 log10 CFU/g) as compared with M99-infected rats (6.67 log10 CFU/g; P < 0.001). Marked differences were also seen in rats co-infected with M99 and PS846, at a 1:1 ratio. While M99 was found at high levels within vegetations, kidneys and spleens (mean log10 CFU/g: 6.62, 5.07 and 4.18, respectively) PS846 was not detected within these tissues. Thus, platelet binding by GspB appears to be a major interaction in the pathogenesis of endocarditis due to S. gordonii.
doi:10.1016/j.micpath.2008.06.004
PMCID: PMC2574613  PMID: 18656529
Endocarditis; Platelets; Streptococci; Virulence; Adhesins; Bacterial
12.  Glycine Residues in the Hydrophobic Core of the GspB Signal Sequence Route Export toward the Accessory Sec Pathway▿  
Journal of Bacteriology  2007;189(10):3846-3854.
The Streptococcus gordonii cell surface glycoprotein GspB mediates high-affinity binding to distinct sialylated carbohydrate structures on human platelets and salivary proteins. GspB is glycosylated in the cytoplasm of S. gordonii and is then transported to the cell surface via a dedicated transport system that includes the accessory Sec components SecA2 and SecY2. The means by which the GspB preprotein is selectively recognized by the accessory Sec system have not been characterized fully. GspB has a 90-residue amino-terminal signal sequence that displays a traditional tripartite structure, with an atypically long amino-terminal (N) region followed by hydrophobic (H) and cleavage regions. In this report, we investigate the relative importance of the N and H regions of the GspB signal peptide for trafficking of the preprotein. The results show that the extended N region does not prevent export by the canonical Sec system. Instead, three glycine residues in the H region not only are necessary for export via the accessory Sec pathway but also interfere with export via the canonical Sec route. Replacement of the H-region glycine residues with helix-promoting residues led to a decrease in the efficiency of SecA2-dependent transport of the preprotein and a simultaneous increase in SecA2-independent translocation. Thus, the hydrophobic core of the GspB signal sequence is responsible primarily for routing towards the accessory Sec system.
doi:10.1128/JB.00027-07
PMCID: PMC1913339  PMID: 17369296
13.  Binding of the Streptococcal Surface Glycoproteins GspB and Hsa to Human Salivary Proteins  
Infection and Immunity  2006;74(3):1933-1940.
GspB and Hsa are homologous surface glycoproteins of Streptococcus gordonii that bind sialic acid moieties on platelet membrane glycoprotein Ibα. Since this species is an important member of the oral flora, we examined the direct binding of these adhesins to human salivary proteins. Both GspB and Hsa bound low-molecular-weight salivary mucin MG2 and salivary agglutinin. Hsa also bound several other salivary proteins, including secretory immunoglobulin A. Screening of six oral streptococcal isolates revealed that at least two of the strains expressed GspB homologues. These results indicate that GspB-like adhesins may be important for oral bacterial colonization.
doi:10.1128/IAI.74.3.1933-1940.2006
PMCID: PMC1418684  PMID: 16495569
14.  Two Additional Components of the Accessory Sec System Mediating Export of the Streptococcus gordonii Platelet-Binding Protein GspB 
Journal of Bacteriology  2005;187(11):3878-3883.
The gspB-secY2A2 locus of Streptococcus gordonii strain M99 encodes the platelet-binding glycoprotein GspB, along with proteins that mediate its glycosylation and export. We have identified two additional components of the accessory Sec system (Asp4 and Asp5) encoded just downstream of gtfB in the gspB-secY2A2 locus. These proteins are required for GspB export and for normal levels of platelet binding by M99. Asp4 and Asp5 may be functional homologues of SecE and SecG, respectively.
doi:10.1128/JB.187.11.3878-3883.2005
PMCID: PMC1112061  PMID: 15901716
15.  Four Proteins Encoded in the gspB-secY2A2 Operon of Streptococcus gordonii Mediate the Intracellular Glycosylation of the Platelet-Binding Protein GspB 
Journal of Bacteriology  2004;186(21):7100-7111.
Platelet binding by Streptococcus gordonii strain M99 is mediated predominantly by the cell surface glycoprotein GspB. This adhesin consists of a putative N-terminal signal peptide, two serine-rich regions (SRR1 and SRR2), a basic region between SRR1 and SRR2, and a C-terminal cell wall anchoring domain. The glycosylation of GspB is mediated at least in part by Gly and Nss, which are encoded in the secY2A2 locus immediately downstream of gspB. This region also encodes two proteins (Gtf and Orf4) that are required for the expression of GspB but whose functions have not been delineated. In this study, we further characterized the roles of Gly, Nss, Gtf, and Orf4 by investigating the expression and glycosylation of a series of glutathione S-transferase-GspB fusion proteins in M99 and in gly, nss, gtf, and orf4 mutants. Compared with fusion proteins expressed in the wild-type background, fusion proteins expressed in the mutant strain backgrounds showed altered electrophoretic mobility. In addition, the fusion proteins formed insoluble aggregates in protoplasts of the gtf and orf4 mutants. Glycan detection and lectin blot analysis revealed that SRR1 and SRR2 were glycosylated but that the basic region was unmodified. When the fusion protein was expressed in Escherichia coli, glycosylation of this protein was observed only in the presence of both gtf and orf4. These results demonstrate that Gly, Nss, Gtf, and Orf4 are all involved in the intracellular glycosylation of SRRs. Moreover, Gtf and Orf4 are essential for glycosylation, which in turn is important for the solubility of GspB.
doi:10.1128/JB.186.21.7100-7111.2004
PMCID: PMC523221  PMID: 15489421
16.  The Streptococcus gordonii Surface Proteins GspB and Hsa Mediate Binding to Sialylated Carbohydrate Epitopes on the Platelet Membrane Glycoprotein Ibα  
Infection and Immunity  2004;72(11):6528-6537.
Platelet binding by Streptococcus gordonii strain M99 is dependent on expression of the cell wall-anchored glycoprotein GspB. This large cell surface protein is exported from the M99 cytoplasm via a dedicated transport system that includes SecA2 and SecY2. GspB is highly similar to Hsa, a protein expressed by S. gordonii Challis that has been characterized as a sialic acid binding hemagglutinin. In this study, we compared the contribution of GspB and Hsa to the adherence of S. gordonii to selected glycoproteins. Our results indicate that GspB can mediate binding to a variety of sialylated glycoproteins. GspB facilitates binding to carbohydrates bearing sialic acid in either α(2-3) or α(2-6) linkages, with a slight preference for α(2-3) linkages. Furthermore, GspB readily mediates binding to sialic acid residues on immobilized glycocalicin, the extracellular portion of the platelet membrane glycoprotein (GP) Ibα (the ligand binding subunit of the platelet von Willebrand factor receptor complex GPIb-IX-V). Although Hsa is required for the binding of S. gordonii Challis to sialic acid, most of the Hsa expressed by Challis is retained in the cytoplasm. The deficiency in export is due, at least in part, to a nonsense mutation in secA2. Hsa export can be enhanced by complementation with secA2 from M99, which also results in significantly greater binding to sialylated glycoproteins, including glycocalicin. The combined results indicate that GspB and Hsa contribute similar binding capabilities to M99 and Challis, respectively, but there may be subtle differences in the preferred epitopes to which these adhesins bind.
doi:10.1128/IAI.72.11.6528-6537.2004
PMCID: PMC523053  PMID: 15501784
17.  The Streptococcus gordonii Platelet Binding Protein GspB Undergoes Glycosylation Independently of Export 
Journal of Bacteriology  2004;186(3):638-645.
The binding of bacteria and platelets may play a central role in the pathogenesis of infective endocarditis. Platelet binding by Streptococcus gordonii strain M99 is predominantly mediated by the 286-kDa cell wall-anchored protein GspB. This unusually large protein lacks a typical amino-terminal signal peptide and is translocated from the cytoplasm via a dedicated transport system. A 14-kb segment just downstream of gspB encodes SecA2 and SecY2, two components of the GspB-specific transport system. The downstream segment also encodes several putative glycosyl transferases that may be responsible for the posttranslational modification of GspB. In this study, we compared the abilities of M99 and two GspB− mutant strains to bind various lectins. GspB was found to have affinity for lectins that bind N-acetylglucosamine. We also examined variant forms of GspB that lack a carboxy-terminal cell wall-anchoring domain and thus are free of covalent linkage to cell wall peptidoglycan. Like native GspB, these truncated proteins appear to be heavily glycosylated, as evidenced by migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular mass >100 kDa in excess of the predicted mass, negligible staining with conventional protein stains, and reactivity with hydrazide following periodate oxidation. Furthermore, analysis of the carbohydrate associated with the GspB variants by high-pH anion-exchange chromatography revealed the presence of ∼70 to 100 monosaccharide residues per GspB polypeptide (primarily N-acetylglucosamine and glucose). Analysis of GspB in protoplasts of secA2 or secY2 mutant strains, which do not export GspB, indicates that GspB is glycosylated in the cytoplasm of these strains. The combined data suggest that the native GspB is a glycoprotein and that it may be glycosylated prior to export.
doi:10.1128/JB.186.3.638-645.2004
PMCID: PMC321503  PMID: 14729688
18.  Genomic Organization and Molecular Characterization of SM1, a Temperate Bacteriophage of Streptococcus mitis 
Journal of Bacteriology  2003;185(23):6968-6975.
The direct binding of Streptococcus mitis to human platelets is mediated in part by two proteins (PblA and PblB) encoded by a lysogenic bacteriophage (SM1). Since SM1 is the first prophage of S. mitis that has been identified and because of the possible role of these phage-encoded proteins in virulence, we sought to characterize SM1 in greater detail. Sequencing of the SM1 genome revealed that it consisted of 34,692 bp, with an overall G+C content of 39 mol%. Fifty-six genes encoding proteins of 40 or more amino acids were identified. The genes of SM1 appear to be arranged in a modular, life cycle-specific organization. BLAST analysis also revealed that the proteins of SM1 have homologies to proteins from a wide variety of lambdoid phages. Bioinformatic analyses, in addition to N-terminal sequencing of the proteins, led to the assignment of possible functions to a number of proteins, including the integrase, the terminase, and two major structural proteins. Examination of the phage structural components indicates that the phage head may assemble using stable multimers of the major capsid protein, in a process similar to that of phage r1t. These findings indicate that SM1 may be part of a discrete subfamily of the Siphoviridae that includes at least phages r1t of Lactococcus lactis and SF370.3 of Streptococcus pyogenes.
doi:10.1128/JB.185.23.6968-6975.2003
PMCID: PMC262713  PMID: 14617660
19.  Proteins PblA and PblB of Streptococcus mitis, Which Promote Binding to Human Platelets, Are Encoded within a Lysogenic Bacteriophage 
Infection and Immunity  2001;69(10):6186-6192.
The binding of platelets by bacteria is a proposed central mechanism in the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis strain SF100 (an endocarditis isolate) was recently shown to be mediated in part by the surface proteins PblA and PblB. The genes encoding PblA and PblB are clustered with genes nearly identical to those of streptococcal phages r1t, 01205, and Dp-1, suggesting that pblA and pblB might reside within a prophage. To address this possibility, cultures of SF100 were exposed to either mitomycin C or UV light, both of which are known to induce the lytic cycle of many temperate phages. Both treatments caused a significant increase in the transcription of pblA. Treatment with mitomycin C or UV light also caused a substantial increase in the expression of PblA and PblB, as detected by Western blot analysis of proteins in the SF100 cell wall. By electron microscopy, phage particles were readily visible in the supernatants from induced cultures of SF100. The phage, designated SM1, had a double-stranded DNA genome of approximately 35 kb. Southern blot analysis of phage DNA indicated that pblA and pblB were contained within the SM1 genome. Furthermore, Western blot analysis of phage proteins revealed that both PblA and PblB were present in the phage particles. These findings indicate that PblA and PblB are encoded by a lysogenic bacteriophage, which could facilitate the dissemination of these potential virulence determinants to other bacterial pathogens.
doi:10.1128/IAI.69.10.6186-6192.2001
PMCID: PMC98750  PMID: 11553559
20.  Genetic Loci of Streptococcus mitis That Mediate Binding to Human Platelets 
Infection and Immunity  2001;69(3):1373-1380.
The direct binding of bacteria to platelets is a postulated major interaction in the pathogenesis of infective endocarditis. To identify bacterial components that mediate platelet binding by Streptococcus mitis, we screened a Tn916ΔE-derived mutant library of S. mitis strain SF100 for reduced binding to human platelets in vitro. Two distinct loci were found to affect platelet binding. The first contains a gene (pblT) encoding a highly hydrophobic, 43-kDa protein with 12 potential membrane-spanning segments. This protein resembles members of the major facilitator superfamily of small-molecule transporters. The second platelet binding locus consists of an apparent polycistronic operon. This region includes genes that are highly similar to those of Lactococcus lactis phage r1t and Streptococcus thermophilus phage 01205. Two genes (pblA and pblB) encoding large surface proteins are also present. The former encodes a 107-kDa protein containing tryptophan-rich repeats, which may serve to anchor the protein within the cell wall. The latter encodes a 121-kDa protein most similar to a tail fiber protein from phage 01205. Functional mapping by insertion-duplication mutagenesis and gene complementation indicates that PblB may be a platelet adhesin and that expression of PblB may be linked to that of PblA. The combined data indicate that at least two genomic regions contribute to platelet binding by S. mitis. One encodes a probable transmembrane transporter, while the second encodes two large surface proteins resembling structural components of lysogenic phages.
doi:10.1128/IAI.69.3.1373-1380.2001
PMCID: PMC98030  PMID: 11179301

Results 1-20 (20)