PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (35)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Structure of a bacterial putative acetyltransferase defines the fold of the human O-GlcNAcase C-terminal domain 
Open Biology  2013;3(10):130021.
The dynamic modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an essential posttranslational modification present in higher eukaryotes. Removal of O-GlcNAc is catalysed by O-GlcNAcase, a multi-domain enzyme that has been reported to be bifunctional, possessing both glycoside hydrolase and histone acetyltransferase (AT) activity. Insights into the mechanism, protein substrate recognition and inhibition of the hydrolase domain of human OGA (hOGA) have been obtained via the use of the structures of bacterial homologues. However, the molecular basis of AT activity of OGA, which has only been reported in vitro, is not presently understood. Here, we describe the crystal structure of a putative acetyltransferase (OgpAT) that we identified in the genome of the marine bacterium Oceanicola granulosus, showing homology to the hOGA C-terminal AT domain (hOGA-AT). The structure of OgpAT in complex with acetyl coenzyme A (AcCoA) reveals that, by homology modelling, hOGA-AT adopts a variant AT fold with a unique loop creating a deep tunnel. The structures, together with mutagenesis and surface plasmon resonance data, reveal that while the bacterial OgpAT binds AcCoA, the hOGA-AT does not, as explained by the lack of key residues normally required to bind AcCoA. Thus, the C-terminal domain of hOGA is a catalytically incompetent ‘pseudo’-AT.
doi:10.1098/rsob.130021
PMCID: PMC3814719  PMID: 24088714
signalling; O-GlcNAc; glycobiology; protein structure
2.  Genetic and structural validation of Aspergillus fumigatus N-acetylphosphoglucosamine mutase as an antifungal target 
Bioscience Reports  2013;33(5):e00063.
Aspergillus fumigatus is the causative agent of IA (invasive aspergillosis) in immunocompromised patients. It possesses a cell wall composed of chitin, glucan and galactomannan, polymeric carbohydrates synthesized by processive glycosyltransferases from intracellular sugar nucleotide donors. Here we demonstrate that A. fumigatus possesses an active AfAGM1 (A. fumigatus N-acetylphosphoglucosamine mutase), a key enzyme in the biosynthesis of UDP (uridine diphosphate)–GlcNAc (N-acetylglucosamine), the nucleotide sugar donor for chitin synthesis. A conditional agm1 mutant revealed the gene to be essential. Reduced expression of agm1 resulted in retarded cell growth and altered cell wall ultrastructure and composition. The crystal structure of AfAGM1 revealed an amino acid change in the active site compared with the human enzyme, which could be exploitable in the design of selective inhibitors. AfAGM1 inhibitors were discovered by high-throughput screening, inhibiting the enzyme with IC50s in the low μM range. Together, these data provide a platform for the future development of AfAGM1 inhibitors with antifungal activity.
doi:10.1042/BSR20130053
PMCID: PMC3763426  PMID: 23844980
cell wall; drug target; enzyme; inhibitor; nucleotide sugar; protein structure; AfAGM1, A. fumigatus N-acetylphosphoglucosamine mutase; AGM1, N-acetylphosphoglucosamine mutase; CaAGM1, Candida albicans AGM1; Fru-6P, fructose 6-phosphate; G6PDH, glucose-6-phosphate dehydrogenase; GlcNAc, N-acetylglucosamine; GlcNAc-1P, N-acetylglucosamine-1-phosphate; GlcN-6P, glucosamine 6-phosphate; GFA1, glutamine: Fru-6P amidotransferase; GNA1, GlcN-6P acetyltransferase; IA, invasive aspergillosis; MIC, minimum inhibitory concentration; MM, minimal medium; RMSD, root mean square deviation; UAP1, UDP–GlcNAc pyrophosphorylase; UDP, uridine diphosphate
3.  Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis 
Open Biology  2013;3(9):130022.
The fungal cell possesses an essential carbohydrate cell wall. The outer layer, mannan, is formed by mannoproteins carrying highly mannosylated O- and N-linked glycans. Yeast mannan biosynthesis is initiated by a Golgi-located complex (M-Pol I) of two GT-62 mannosyltransferases, Mnn9p and Van1p, that are conserved in fungal pathogens. Saccharomyces cerevisiae and Candida albicans mnn9 knockouts show an aberrant cell wall and increased antibiotic sensitivity, suggesting the enzyme is a potential drug target. Here, we present the structure of ScMnn9 in complex with GDP and Mn2+, defining the fold and catalytic machinery of the GT-62 family. Compared with distantly related GT-78/GT-15 enzymes, ScMnn9 carries an unusual extension. Using a novel enzyme assay and site-directed mutagenesis, we identify conserved amino acids essential for ScMnn9 ‘priming’ α-1,6-mannosyltransferase activity. Strikingly, both the presence of the ScMnn9 protein and its product, but not ScMnn9 catalytic activity, are required to activate subsequent ScVan1 processive α-1,6-mannosyltransferase activity in the M-Pol I complex. These results reveal the molecular basis of mannan synthesis and will aid development of inhibitors targeting this process.
doi:10.1098/rsob.130022
PMCID: PMC3787745  PMID: 24026536
cell wall; glycobiology; glycosyltransferase; mannan; M-Pol I; protein crystallography
4.  O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis 
Nature chemical biology  2012;8(12):969-974.
Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-GlcNAc transferase using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human O-GlcNAc transferase recognizes the sugar donor and acceptor peptide and employs a novel catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base, as well as an essential lysine. This mechanism appears to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate, and explains the unexpected specificity of a recently reported metabolic O-GlcNAc transferase inhibitor.
doi:10.1038/nchembio.1108
PMCID: PMC3509171  PMID: 23103942
5.  Protein O-GlcNAcylation Is Required for Fibroblast Growth Factor Signaling in Drosophila 
Science signaling  2011;4(204):ra89.
Glycosylation is essential for growth factor signaling through N-glycosylation of ligands and receptors and the biosynthesis of proteoglycans as co-receptors. Here, we show that protein O-GlcNAcylation is crucial for fibroblast growth factor (FGF) signaling in Drosophila. We found that nesthocker (nst) encodes a phosphoacetylglucosamine mutase and that nst mutant embryos exhibited low amounts of intracellular uridine 5′-diphosphate–N-acetylglucosamine (UDP-GlcNAc), which disrupted protein O-GlcNAcylation. Nst was required for mitogen-activated protein kinase (MAPK) signaling downstream of FGF but not MAPK signaling activated by epidermal growth factor. nst was dispensable for the function of the FGF ligands and the FGF receptor’s extracellular domain but was essential in the signal-receiving cells downstream of the FGF receptor. We identified the adaptor protein Downstream of FGF receptor (Dof), which interacts with the FGF receptor, as the relevant target for O-GlcNAcylation in the FGF pathway, suggesting that protein O-GlcNAcylation of the activated receptor complex is essential for FGF signal transduction.
doi:10.1126/scisignal.2002335
PMCID: PMC3660836  PMID: 22375049
6.  Natural product-guided discovery of a fungal chitinase inhibitor 
Chemistry & biology  2010;17(12):1275-1281.
Summary
Natural products are often large, synthetically intractable molecules, yet frequently offer surprising inroads into previously unexplored chemical space for enzyme inhibitors. Argifin is a cyclic pentapeptide that was originally isolated as a fungal natural product. It competitively inhibits family 18 chitinases by mimicking the chitooligosaccharide substrate of these enzymes. Interestingly, argifin is a nanomolar inhibitor of the bacterial-type subfamily of fungal chitinases that possess an extensive chitin-binding groove, but does not inhibit the much smaller, plant-type enzymes from the same family that are involved in fungal cell division and are thought to be potential drug targets. Here we show that a small, highly efficient, argifin-derived nine-atom fragment is a micromolar inhibitor of the plant-type chitinase ChiA1 from the opportunistic pathogen Aspergillus fumigatus. Evaluation of the binding mode with the first crystal structure of an A. fumigatus plant-type chitinase reveals that the compound binds the catalytic machinery in the same manner as observed for argifin with the bacterial-type chitinases. The structure of the complex was used to guide synthesis of derivatives to explore a pocket near the catalytic machinery. This work provides synthetically tractable plant-type family 18 chitinase inhibitors from the repurposing of a natural product.
doi:10.1016/j.chembiol.2010.07.018
PMCID: PMC3518266  PMID: 21168763
7.  Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation 
Science (New York, N.Y.)  2009;326(5960):1707-1711.
The LKB1 tumor suppressor is a protein kinase that controls activity of adenine monophosphate-activated protein kinase (AMPK). LKB1 activity is regulated by the pseudokinase STRADα and the scaffolding protein MO25α, through an unknown, phosphorylation-independent, mechanism. We describe the structure of the core heterotrimeric LKB1-STRADα-MO25α complex, revealing an unusual allosteric mechanism of LKB1 activation. STRADα adopts a closed conformation typical of active protein kinases and binds LKB1 as a pseudosubstrate. STRADα and MO25α promote the active conformation of LKB1, which is stabilised by MO25α interacting with the LKB1 activation loop. This previously undescribed mechanism of kinase activation may be relevant to understanding the evolution of other pseudokinases. The structure also reveals how mutations found in Peutz-Jeghers syndrome and other cancers impair LKB1 function.
doi:10.1126/science.1178377
PMCID: PMC3518268  PMID: 19892943
8.  Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase 
The Biochemical journal  2010;426(3):281-292.
Legionnaires’ disease is caused by a lethal colonization of alveolar macrophages with the Gram-negative bacterium Legionella pneumophila. LpGT (L. pneumophila glucosyltransferase; also known as Lgt1) has recently been identified as a virulence factor, shutting down protein synthesis in the human cell by specific glucosylation of EF1A (elongation factor 1A), using an unknown mode of substrate recognition and a retaining mechanism for glycosyl transfer. We have determined the crystal structure of LpGT in complex with substrates, revealing a GT-A fold with two unusual protruding domains. Through structure-guided mutagenesis of LpGT, several residues essential for binding of the UDP-glucose-donor and EF1A-acceptor substrates were identified, which also affected L. pneumophila virulence as demonstrated by microinjection studies. Together, these results suggested that a positively charged EF1A loop binds to a negatively charged conserved groove on the LpGT structure, and that two asparagine residues are essential for catalysis. Furthermore, we showed that two further L. pneumophila glycosyltransferases possessed the conserved UDP-glucose-binding sites and EF1A-binding grooves, and are, like LpGT, translocated into the macrophage through the Icm/Dot (intracellular multiplication/defect in organelle trafficking) system.
doi:10.1042/BJ20091351
PMCID: PMC3518269  PMID: 20030628
elongation factor 1A (EF1A); glucosyl transferase; Legionella pneumophila; microinjection; site-directed mutagenesis; protein structure
9.  Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties 
The Biochemical journal  2012;446(1):149-157.
The chitinase-like proteins YKL-39 (chitinase 3-like-2) and YKL-40 (chitinase 3-like-1) are highly expressed in a number of human cells independent of their origin (mesenchymal, epithelial or haemapoietic). Elevated serum levels of YKL-40 have been associated with a negative outcome in a number of diseases ranging from cancer to inflammation and asthma. YKL-39 expression has been associated with osteoarthritis. However, despite the reported association with disease, the physiological or pathological role of these proteins is still very poorly understood. Although YKL-39 is homologous to the two family 18 chitinases in the human genome, it has been reported to lack any chitinase activity. In the present study, we show that human YKL-39 possesses a chitinase-like fold, but lacks key active-site residues required for catalysis. A glycan screen identified oligomers of N-acetylglucosamine as preferred binding partners. YKL-39 binds chitooligosaccharides and a newly synthesized derivative of the bisdionin chitinase-inhibitor class with micromolar affinity, through a number of conserved tryptophan residues. Strikingly, the chitinase activity of YKL-39 was recovered by reverting two non-conservative substitutions in the active site to those found in the active enzymes, suggesting that YKL-39 is a pseudo-chitinase with retention of chitinase-like ligand-binding properties.
doi:10.1042/BJ20120377
PMCID: PMC3513709  PMID: 22742450
chitinase; chitinase-like proteins; glycan; glycan array; glycobiology; protein structure; lectin; X-ray crystallography
10.  O-GlcnAc transfer: size matters 
Nature chemical biology  2011;7(3):134-135.
O-GlcNAc transferase is an essential protein catalyzing the O-GlcNAc modification of hundreds of intracellular proteins in higher eukaryotes. The structure of human O-GlcNAc transferase represents a leap in our understanding of the catalytic mechanism and recognition of protein substrates.
doi:10.1038/nchembio.529
PMCID: PMC3513710  PMID: 21321551
11.  Structural and biochemical characterization of a trapped coenzyme A adduct of Caenorhabditis elegans glucosamine-6-phosphate N-acetyltransferase 1 
Glucosamine-6-phosphate N-acetyltransferase is an essential enzyme of the eukaryotic UDP-GlcNAc biosynthetic pathway. A crystal structure at 1.55 Å resolution revealed a highly unusual covalent product complex and biochemical studies investigated the function of a fully conserved active-site cysteine.
Glucosamine-6-phosphate N-acetyltransferase 1 (GNA1) produces GlcNAc-6-phosphate from GlcN-6-phosphate and acetyl coenzyme A. Early mercury-labelling experiments implicated a conserved cysteine in the reaction mechanism, whereas recent structural data appear to support a mechanism in which this cysteine plays no role. Here, two crystal structures of Caenorhabditis elegans GNA1 are reported, revealing an unusual covalent complex between this cysteine and the coenzyme A product. Mass-spectrometric and reduction studies showed that this inactive covalent complex can be reactivated through reduction, yet mutagenesis of the cysteine supports a previously reported bi-bi mechanism. The data unify the apparently contradictory earlier reports on the role of a cysteine in the GNA1 active site.
doi:10.1107/S0907444912019592
PMCID: PMC3413214  PMID: 22868768
carbohydrates; glycobiology; Caenorhabditis elegans; glucosamine-6-phosphate N-acetyltransferase; coenzyme A adduct; mechanism
12.  Purification, crystallization and preliminary X-ray diffraction data of UDP-galactopyranose mutase from Aspergillus fumigatus  
The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction data are described for UDP-galactopyranose mutase, an enzyme involved in cell-wall synthesis in A. fumigatus.
Aspergillus fumigatus UDP-galactopyranose mutase (AfUGM) is a potential drug target involved in the synthesis of the cell wall of this fungal pathogen. AfUGM was recombinantly produced in Escherichia coli, purified and crystallized by the sitting-drop method, producing orthorhombic crystals that diffracted to a resolution of 3.25 Å. The crystals contained four molecules per asymmetric unit and belonged to space group P212121, with unit-cell parameters a = 127.72, b = 134.30, c = 173.84 Å. Incorporation of selenomethionine was achieved, but the resulting crystals did not allow solution of the phase problem.
doi:10.1107/S1744309112017915
PMCID: PMC3370916  PMID: 22684076
UDP-galactopyranose mutase; Aspergillus fumigatus
13.  IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold* 
The Journal of Biological Chemistry  2012;287(27):22483-22496.
Background: Phosphoinositide 3-kinase lipid signals exert important biological effects through proteins with specific recognition domains.
Results: We identify a novel such protein domain in IQGAP proteins and define its crystal structure and phosphoinositide binding preferences.
Conclusion: This domain is a distinct cellular phosphatidylinositol 3,4,5-trisphosphate sensor, characteristic of select IQGAP proteins.
Significance: These observations open a new and unexpected window on phosphoinositide 3-kinase signaling networks.
Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105–107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.
doi:10.1074/jbc.M112.352773
PMCID: PMC3391087  PMID: 22493426
Cell signaling; Crystal Structure; PI 3-Kinase (PI3K); Protein Domains; Receptors; C2 Domain; IQGAP; PH Domain; PtdInsP3; aPI Domain
14.  Synergy of Peptide and Sugar in O-GlcNAcase Substrate Recognition 
Chemistry & Biology  2012;19(2):173-178.
Summary
Protein O-GlcNAcylation is an essential reversible posttranslational modification in higher eukaryotes. O-GlcNAc addition and removal is catalyzed by O-GlcNAc transferase and O-GlcNAcase, respectively. We report the molecular details of the interaction of a bacterial O-GlcNAcase homolog with three different synthetic glycopeptides derived from characterized O-GlcNAc sites in the human proteome. Strikingly, the peptides bind a conserved O-GlcNAcase substrate binding groove with similar orientation and conformation. In addition to extensive contacts with the sugar, O-GlcNAcase recognizes the peptide backbone through hydrophobic interactions and intramolecular hydrogen bonds, while avoiding interactions with the glycopeptide side chains. These findings elucidate the molecular basis of O-GlcNAcase substrate specificity, explaining how a single enzyme achieves cycling of the complete O-GlcNAc proteome. In addition, this work will aid development of O-GlcNAcase inhibitors that target the peptide binding site.
Highlights
► Multiple O-GlcNAc peptides bind OGA with similar orientation and conformations ► OGA interacts with the peptide backbone of substrates, not with side chains ► Intramolecular hydrogen bonds affect substrate conformation and Km of glycopeptides ► Different OGA inhibitors display varying levels of peptide mimicry
doi:10.1016/j.chembiol.2012.01.011
PMCID: PMC3476531  PMID: 22365600
15.  Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations 
Open biology  2011;1(3):110012.
Missense mutations of the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) gene cause autosomal-recessive Parkinson's disease. To date, little is known about the intrinsic catalytic properties of PINK1 since the human enzyme displays such low kinase activity in vitro. We have discovered that, in contrast to mammalian PINK1, insect orthologues of PINK1 we have investigated—namely Drosophila melanogaster (dPINK1), Tribolium castaneum (TcPINK1) and Pediculus humanus corporis (PhcPINK1)—are active as judged by their ability to phosphorylate the generic substrate myelin basic protein. We have exploited the most active orthologue, TcPINK1, to assess its substrate specificity and elaborated a peptide substrate (PINKtide, KKWIpYRRSPRRR) that can be employed to quantify PINK1 kinase activity. Analysis of PINKtide variants reveal that PINK1 phosphorylates serine or threonine, but not tyrosine, and we show that PINK1 exhibits a preference for a proline at the +1 position relative to the phosphorylation site. We have also, for the first time, been able to investigate the effect of Parkinson's disease-associated PINK1 missense mutations, and found that nearly all those located within the kinase domain, as well as the C-terminal non-catalytic region, markedly suppress kinase activity. This emphasizes the crucial importance of PINK1 kinase activity in preventing the development of Parkinson's disease. Our findings will aid future studies aimed at understanding how the activity of PINK1 is regulated and the identification of physiological substrates.
doi:10.1098/rsob.110012
PMCID: PMC3352081  PMID: 22645651
biochemistry; Parkinson's disease; kinase
17.  Charge-Surrounded Pockets and Electrostatic Interactions with Small Ions Modulate the Activity of Retroviral Fusion Proteins 
PLoS Pathogens  2011;7(2):e1001268.
Refolding of viral class-1 membrane fusion proteins from a native state to a trimer-of-hairpins structure promotes entry of viruses into cells. Here we present the structure of the bovine leukaemia virus transmembrane glycoprotein (TM) and identify a group of asparagine residues at the membrane-distal end of the trimer-of-hairpins that is strikingly conserved among divergent viruses. These asparagines are not essential for surface display of pre-fusogenic envelope. Instead, substitution of these residues dramatically disrupts membrane fusion. Our data indicate that, through electrostatic interactions with a chloride ion, the asparagine residues promote assembly and profoundly stabilize the fusion-active structures that are required for viral envelope-mediated membrane fusion. Moreover, the BLV TM structure also reveals a charge-surrounded hydrophobic pocket on the central coiled coil and interactions with basic residues that cluster around this pocket are critical to membrane fusion and form a target for peptide inhibitors of envelope function. Charge-surrounded pockets and electrostatic interactions with small ions are common among class-1 fusion proteins, suggesting that small molecules that specifically target such motifs should prevent assembly of the trimer-of-hairpins and be of value as therapeutic inhibitors of viral entry.
Author Summary
Human T-cell leukaemia virus types-1 (HTLV-1) and bovine leukaemia virus (BLV) are divergent blood borne viruses that cause hematological malignancies in humans and cattle respectively. In common with other enveloped viruses, infection of cells by HTLV-1 and BLV is dependent on the membrane fusion properties of the viral envelope glycoproteins. Here we have solved the crystal structure of the BLV transmembrane glycoprotein, and, through a functional and comparative analysis with HTLV-1, we have identified features that are critical to fusion protein function. In particular, we demonstrate that electrostatic interactions with small ions dramatically stabilize the assembly and fusion-associated forms of the BLV TM, but are not required for the cell surface display of native pre-fusogenic envelope. Moreover, we show that charged residues that border a deep hydrophobic pocket contribute directly to appropriate folding of fusion-active envelope and are critical to membrane fusion. Importantly, the charged residues that border the pocket are key features that determine the specificity and activity of peptide inhibitors of envelope function. Our study demonstrates that charge-surrounded pockets and electrostatic interactions with small ions are significant leitmotifs of diverse class-1 fusion proteins and that these elements represent ideal targets for novel small-molecule inhibitors of viral entry.
doi:10.1371/journal.ppat.1001268
PMCID: PMC3033372  PMID: 21304939
18.  Acetazolamide-based fungal chitinase inhibitors 
Bioorganic & Medicinal Chemistry  2010;18(23):8334-8340.
Graphical abstract
Chitin is an essential structural component of the fungal cell wall. Chitinases are thought to be important for fungal cell wall remodelling, and inhibition of these enzymes has been proposed as a potential strategy for development of novel anti-fungals. The fungal pathogen Aspergillus fumigatus possesses two distinct multi-gene chitinase families. Here we explore acetazolamide as a chemical scaffold for the inhibition of an A. fumigatus ‘plant-type’ chitinase. A co-crystal structure of AfChiA1 with acetazolamide was used to guide synthesis and screening of acetazolamide analogues that yielded SAR in agreement with these structural data. Although acetazolamide and its analogues are weak inhibitors of the enzyme, they have a high ligand efficiency and as such are interesting leads for future inhibitor development.
doi:10.1016/j.bmc.2010.09.062
PMCID: PMC2997425  PMID: 21044846
Chitinase; Aspergillus fumigatus
19.  Cell-Penetrant, Nanomolar O-GlcNAcase Inhibitors Selective against Lysosomal Hexosaminidases 
Chemistry & Biology  2010;17(11):1250-1255.
Summary
Posttranslational modification of metazoan nucleocytoplasmic proteins with N-acetylglucosamine (O-GlcNAc) is essential, dynamic, and inducible and can compete with protein phosphorylation in signal transduction. Inhibitors of O-GlcNAcase, the enzyme removing O-GlcNAc, are useful tools for studying the role of O-GlcNAc in a range of cellular processes. We report the discovery of nanomolar OGA inhibitors that are up to 900,000-fold selective over the related lysosomal hexosaminidases. When applied at nanomolar concentrations on live cells, these cell-penetrant molecules shift the O-GlcNAc equilibrium toward hyper-O-GlcNAcylation with EC50 values down to 3 nM and are thus invaluable tools for the study of O-GlcNAc cell biology.
Highlights
► Structure-guided design of human O-GlcNAcase inhibitors, GlcNAcstatins ► The GlcNAcstatins are competitive, nanomolar inhibitors ► The molecular basis of the exquisite selectivity revealed by crystallography ► First direct evidence of O-GlcNAcase inhibitors penetrating cells
doi:10.1016/j.chembiol.2010.09.014
PMCID: PMC3032886  PMID: 21095575
20.  Human OGA binds substrates in a conserved peptide recognition groove 
Biochemical Journal  2010;432(Pt 1):1-7.
Modification of cellular proteins with O-GlcNAc (O-linked N-acetylglucosamine) competes with protein phosphorylation and regulates a plethora of cellular processes. O-GlcNAcylation is orchestrated by two opposing enzymes, O-GlcNAc transferase and OGA (O-GlcNAcase or β-N-acetylglucosaminidase), which recognize their target proteins via as yet unidentified mechanisms. In the present study, we uncovered the first insights into the mechanism of substrate recognition by human OGA. The structure of a novel bacterial OGA orthologue reveals a putative substrate-binding groove, conserved in metazoan OGAs. Guided by this structure, conserved amino acids lining this groove in human OGA were mutated and the activity on three different substrate proteins [TAB1 (transforming growth factor-β-activated protein kinase 1-binding protein 1), FoxO1 (forkhead box O1) and CREB (cAMP-response-element-binding protein)] was tested in an in vitro deglycosylation assay. The results provide the first evidence that human OGA may possess a substrate-recognition mechanism that involves interactions with O-GlcNAcylated proteins beyond the GlcNAc-binding site, with possible implications for differential regulation of cycling of O-GlcNAc on different proteins.
doi:10.1042/BJ20101338
PMCID: PMC2973230  PMID: 20863279
β-N-acetylglucosaminidase; O-linked N-acetylglucosamine (O-GlcNAc); peptide recognition groove; protein glycosylation; CpNagJ, Clostridium perfringens NagJ; CREB, cAMP-response-element-binding protein; Fmoc, fluoren-9-ylmethoxycarbonyl; FoxO1, forkhead box O1; GST, glutathione transferase; HAT, histone acetyltransferase; HEK, human embryonic kidney; LC, liquid chromatography; 4MU-GlcNAc, 4-methylumbelliferyl-β-N-acetylglucosamine; OGA, O-GlcNAcase or β-N-acetylglucosaminidase; hOGA, human OGA; OgOGA, Oceanicola granulosus OGA; OGT, O-GlcNAc transferase; O-GlcNAc, O-linked N-acetylglucosamine; pNP-GlcNAc, p-nitrophenyl-β-N-acetylglucosamine; PUGNAc, O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate; RMSD, root mean square deviation; TAB1, transforming growth factor-β-activated protein kinase 1-binding protein 1
21.  N-Myristoyltransferase inhibitors as new leads to treat sleeping sickness 
Nature  2010;464(7289):728-732.
African sleeping sickness or human African trypanosomiasis (HAT), caused by Trypanosoma brucei spp., is responsible for ~30,000 deaths each year. Available treatments for this neglected disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease, when the parasite has infected the central nervous system. Here, we report the validation of a molecular target and discovery of associated lead compounds with potential to address this unmet need. Inhibition of this target, T. brucei N-myristoyltransferase (TbNMT), leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have very promising pharmaceutical properties and represent an exciting opportunity to develop oral drugs to treat this devastating disease. Our studies validate TbNMT as a promising therapeutic target for HAT.
doi:10.1038/nature08893
PMCID: PMC2917743  PMID: 20360736
22.  An efficient and versatile synthesis of GlcNAcstatins—potent and selective O-GlcNAcase inhibitors built on the tetrahydroimidazo[1,2-a]pyridine scaffold 
Tetrahedron  2010;66(39-3):7838-7849.
We report a novel approach to the synthesis of GlcNAcstatins—members of an emerging family of potent and selective inhibitors of peptidyl O-GlcNAc hydrolase build upon tetrahydroimidazo[1,2-a]pyridine scaffold. Making use of a streamlined synthetic sequence featuring de novo synthesis of imidazoles from glyoxal, ammonia and aldehydes, a properly functionalised linear GlcNAcstatin precursor has been efficiently prepared starting from methyl 3,4-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-d-mannopyranoside. Subsequent ring closure of the linear precursor in an intramolecular SN2 process furnished the key fused d-mannose-imidazole GlcNAcstatin precursor in excellent yield. Finally, a sequence of transformations of this key intermediate granted expeditious access to a variety of the target compounds bearing a C(2)-phenethyl group and a range of N(8) acyl substituents. The versatility of the new approach stems from an appropriate choice of a set of acid labile permanent protecting groups on the monosaccharide starting material. Application was demonstrated by the synthesis of GlcNAcstatins containing polyunsaturated and thiol-containing amido substituents.
Graphical abstract
doi:10.1016/j.tet.2010.07.037
PMCID: PMC2956484  PMID: 20976183
23.  Substrate and product analogues as human O-GlcNAc transferase inhibitors 
Amino Acids  2010;40(3):781-792.
Protein glycosylation on serine/threonine residues with N-acetylglucosamine (O-GlcNAc) is a dynamic, inducible and abundant post-translational modification. It is thought to regulate many cellular processes and there are examples of interplay between O-GlcNAc and protein phosphorylation. In metazoa, a single, highly conserved and essential gene encodes the O-GlcNAc transferase (OGT) that transfers GlcNAc onto substrate proteins using UDP–GlcNAc as the sugar donor. Specific inhibitors of human OGT would be useful tools to probe the role of this post-translational modification in regulating processes in the living cell. Here, we describe the synthesis of novel UDP–GlcNAc/UDP analogues and evaluate their inhibitory properties and structural binding modes in vitro alongside alloxan, a previously reported weak OGT inhibitor. While the novel analogues are not active on living cells, they inhibit the enzyme in the micromolar range and together with the structural data provide useful templates for further optimisation.
Electronic supplementary material
The online version of this article (doi:10.1007/s00726-010-0688-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s00726-010-0688-y
PMCID: PMC3040809  PMID: 20640461
O-GlcNAc; Post-translational modification; Inhibitor; Signalling; Crystal structure
24.  Screening-based discovery of drug-like O-GlcNAcase inhibitor scaffolds 
Febs Letters  2010;584(4):694-700.
O-GlcNAcylation is an essential posttranslational modification in metazoa. Modulation of O-GlcNAc levels with small molecule inhibitors of O-GlcNAc hydrolase (OGA) is a useful strategy to probe the role of this modification in a range of cellular processes. Here we report the discovery of novel, low molecular weight and drug-like O-GlcNAcase inhibitor scaffolds by high-throughput screening. Kinetic and X-ray crystallographic analyses of the binding modes with human/bacterial O-GlcNAcases identify some of these as competitive inhibitors. Comparative kinetic experiments with the mechanistically related human lysosomal hexosaminidases reveal that three of the inhibitor scaffolds show selectivity towards human OGA. These scaffolds provide attractive starting points for the development of non-carbohydrate, drug-like OGA inhibitors.
doi:10.1016/j.febslet.2009.12.020
PMCID: PMC2828546  PMID: 20026047
O-GlcNAc; Posttranslational modification; Inhibitor; Crystal structure
25.  Streptococcus mutans SMU.623c Codes for a Functional, Metal-Dependent Polysaccharide Deacetylase That Modulates Interactions with Salivary Agglutinin▿ † 
Journal of Bacteriology  2008;191(1):394-402.
The genome sequence of the oral pathogen Streptococcus mutans predicts the presence of two putative polysaccharide deacetylases. The first, designated PgdA in this paper, shows homology to the catalytic domains of peptidoglycan deacetylases from Streptococcus pneumoniae and Listeria monocytogenes, which are both thought to be involved in the bacterial defense mechanism against human mucosal lysozyme and are part of the CAZY family 4 carbohydrate esterases. S. mutans cells in which the pgdA gene was deleted displayed a different colony texture and a slightly increased cell surface hydrophobicity and yet did not become hypersensitive to lysozyme as shown previously for S. pneumoniae. To understand this apparent lack of activity, the high-resolution X-ray structure of S. mutans PgdA was determined; it showed the typical carbohydrate esterase 4 fold, with metal bound in a His-His-Asp triad. Analysis of the protein surface showed that an extended groove lined with aromatic residues is orientated toward the active-site residues. The protein exhibited metal-dependent de-N-acetylase activity toward a hexamer of N-acetylglucosamine. No activity was observed toward shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. In agreement with the lysozyme data this would suggest that S. mutans PgdA does not act on peptidoglycan but on an as-yet-unidentified polysaccharide within the bacterial cell surface. Strikingly, the pgdA-knockout strain showed a significant increase in aggregation/agglutination by salivary agglutinin, in agreement with this gene acting as a deacetylase of a cell surface glycan.
doi:10.1128/JB.00838-08
PMCID: PMC2612446  PMID: 18978064

Results 1-25 (35)