Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Structure-Based Mutational Studies of Substrate Inhibition of Betaine Aldehyde Dehydrogenase BetB from Staphylococcus aureus 
Applied and Environmental Microbiology  2014;80(13):3992-4002.
Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD+ binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.
PMCID: PMC4054205  PMID: 24747910
2.  Coiled-coil dimerization of the LOV2 domain of the blue-light photoreceptor phototropin 1 from Arabidopsis thaliana  
The X-ray structure of the light, oxygen or voltage domain 2 of phototropin 1 from A. thaliana (AtLOV2) in its dark-adapted state has been determined. The N-terminal flanking A′α helix of AtLOV2 plays a role in its dimerization.
A key role in signal transduction and dimerization mediated by Per–Arnt–Sim (PAS) domains is played by α-helical linkers that flank the structurally similar α/β cores of these domains. However, crystal-packing forces and the different construct lengths and sequences of the PAS domains influence the final length and orientation of the linkers relative to the core and create uncertainty in the exact mechanism of the linker function. Thus, structural characterization and comparison of the linkers within isolated PAS-domain constructs and/or full-length PAS-containing proteins is important for clarification of the mechanism. The plant blue-light photoreceptors phototropins possess two N-terminal flavin mononucleotide-based light, oxygen or voltage (LOV) domains (LOV1 and LOV2) that comprise a subclass of the PAS family and one C-terminal serine/threonine kinase domain whose enzymatic activity is regulated by blue light. The dark-adapted state crystal structures of the Arabidopsis thaliana phototropin 1 and phototropin 2 LOV1-domain constructs flanked by an N-terminal A′α helix and the structure of the phototropin 2 core LOV2 domain are known. Here, the crystal structure of the A. thaliana phototropin 1 LOV2 domain has been determined in its dark-adapted state. The core is flanked by an N-terminal A′α helix and a C-terminal Jα helix similar to those in the previously reported structure of Avena sativa phototropin 1 LOV2. In contrast to the monomeric A. sativa LOV2, A. thaliana LOV2 is a dimer in which two A′α helices adopt a scissor-like orientation at the dimer interface and form a short α-helical coiled coil. The Jα helix predominantly interacts with the β-sheet and plays a role in coiled-coil formation and dimerization.
PMCID: PMC3855711  PMID: 24316821
LOV domains; N-terminal A′α helix; C-terminal Jα helix; coiled coil; dimerization; light-mediated signal transduction
3.  Structure of the Type III Secretion Effector Protein ExoU in Complex with Its Chaperone SpcU 
PLoS ONE  2012;7(11):e49388.
Disease causing bacteria often manipulate host cells in a way that facilitates the infectious process. Many pathogenic gram-negative bacteria accomplish this by using type III secretion systems. In these complex secretion pathways, bacterial chaperones direct effector proteins to a needle-like secretion apparatus, which then delivers the effector protein into the host cell cytosol. The effector protein ExoU and its chaperone SpcU are components of the Pseudomonas aeruginosa type III secretion system. Secretion of ExoU has been associated with more severe infections in both humans and animal models. Here we describe the 1.92 Å X-ray structure of the ExoU–SpcU complex, a full-length type III effector in complex with its full-length cognate chaperone. Our crystallographic data allow a better understanding of the mechanism by which ExoU kills host cells and provides a foundation for future studies aimed at designing inhibitors of this potent toxin.
PMCID: PMC3498133  PMID: 23166655
4.  Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria 
The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS.
Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpSSA), Vibrio cholerae (AcpSVC) and Bacillus anthracis (AcpSBA) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpSBA is emphasized because of the two 3′,5′-adenosine diphosphate (3′,5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′,5′-ADP is bound as the 3′,5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′,5′-ADP–AcpS binary complexes. The position of the second 3′,5′-ADP has never been described before. It is in close proximity to the first 3′,5′-­ADP and the ACP-binding site. The coordination of two ADPs in AcpSBA may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.
PMCID: PMC3447402  PMID: 22993090
acyl-carrier-protein synthase; acyl carrier protein; type II fatty-acid synthesis; inhibition; 3′,5′-adenosine diphosphate; coenzyme A
5.  Role of the Membrane Localization Domain of the Pseudomonas aeruginosa Effector Protein ExoU in Cytotoxicity▿ †  
Infection and Immunity  2010;78(8):3346-3357.
ExoU is a potent effector protein that causes rapid host cell death upon injection by the type III secretion system of Pseudomonas aeruginosa. The N-terminal half of ExoU contains a patatin-like phospholipase A2 (PLA2) domain that requires the host cell cofactor superoxide dismutase 1 (SOD1) for activation, while the C-terminal 137 amino acids constitute a membrane localization domain (MLD). Previous studies had utilized insertion and deletion mutations to show that portions of the MLD are required for membrane localization and catalytic activity. Here we further characterize this domain by identifying six residues that are essential for ExoU activity. Substitutions at each of these positions resulted in abrogation of membrane targeting, decreased ExoU-mediated cytotoxicity, and reductions in PLA2 activity. Likewise, each of the six MLD residues was necessary for full virulence in cell culture and murine models of acute pneumonia. Purified recombinant ExoU proteins with substitutions at five of the six residues were not activated by SOD1, suggesting that these five residues are critical for activation by this cofactor. Interestingly, these same five ExoU proteins were partially activated by HeLa cell extracts, suggesting that a host cell cofactor other than SOD1 is capable of modulating the activity of ExoU. These findings add to our understanding of the role of the MLD in ExoU-mediated virulence.
PMCID: PMC2916264  PMID: 20479080

Results 1-5 (5)