PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments 
The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments.
Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.
doi:10.1107/S1399004714019609
PMCID: PMC4304688  PMID: 25615862
small-angle X-ray scattering; proteins in solution; automation; laboratory information-management system
2.  How the ESRF helps industry and how they help the ESRF 
The key features of the functionality facilitating proprietary use of the ESRF’s structural biology beamlines are described, as are the major advantages, in terms of beamline evolution, of the interaction of the ESRF with the pharmaceutical industry.
The ESRF has worked with, and provided services for, the pharmaceutical industry since the construction of its first protein crystallography beamline in the mid-1990s. In more recent times, industrial clients have benefited from a portfolio of beamlines which offer a wide range of functionality and beam characteristics, including tunability, microfocus and micro-aperture. Included in this portfolio is a small-angle X-­ray scattering beamline dedicated to the study of biological molecules in solution. The high demands on throughput and efficiency made by the ESRF’s industrial clients have been a major driving force in the evolution of the ESRF’s macromolecular crystallography resources, which now include remote access, the automation of crystal screening and data collection, and a beamline database allowing sample tracking, experiment reporting and real-time at-a-distance monitoring of experiments. This paper describes the key features of the functionality put in place on the ESRF structural biology beamlines and outlines the major advantages of the interaction of the ESRF with the pharmaceutical industry.
doi:10.1107/S0907444913001108
PMCID: PMC3689532  PMID: 23793155
synchrotron MX beamlines; proprietary access; service data collection; automation
3.  Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution 
Journal of Synchrotron Radiation  2013;20(Pt 4):660-664.
A description of the new ESRF BioSAXS beamline is given. The beamline presented is dedicated to small-angle X-ray scattering of macromolecules in solution operating with a high-throughput sample-changer robot and automated data analysis for quality control and feedback.
Small-angle X-ray scattering (SAXS) measurements of proteins in solution are becoming increasingly popular with biochemists and structural biologists owing to the presence of dedicated high-throughput beamlines at synchrotron sources. As part of the ESRF Upgrade program a dedicated instrument for performing SAXS from biological macromolecules in solution (BioSAXS) has been installed at the renovated BM29 location. The optics hutch has been equipped with new optical components of which the two principal elements are a fixed-exit double multilayer monochromator and a 1.1 m-long toroidal mirror. These new dedicated optics give improved beam characteristics (compared with the previous set-up on ID14-3) regarding the energy tunability, flux and focusing at the detector plane leading to reduced parasitic scattering and an extended s-range. User experiments on the beamline have been successfully carried out since June 2012. A description of the new BioSAXS beamline and the set-up characteristics are presented together with examples of obtained data.
doi:10.1107/S0909049513010431
PMCID: PMC3943554  PMID: 23765312
small-angle X-ray scattering; proteins in solution; automation and high throughput; online HPLC; structural biology
4.  Automatic processing of macromolecular crystallography X-ray diffraction data at the ESRF 
Journal of Applied Crystallography  2013;46(Pt 3):804-810.
A system for the automatic reduction of single- and multi-position macromolecular crystallography data is presented.
The development of automated high-intensity macromolecular crystallography (MX) beamlines at synchrotron facilities has resulted in a remarkable increase in sample throughput. Developments in X-ray detector technology now mean that complete X-ray diffraction datasets can be collected in less than one minute. Such high-speed collection, and the volumes of data that it produces, often make it difficult for even the most experienced users to cope with the deluge. However, the careful reduction of data during experimental sessions is often necessary for the success of a particular project or as an aid in decision making for subsequent experiments. Automated data reduction pipelines provide a fast and reliable alternative to user-initiated processing at the beamline. In order to provide such a pipeline for the MX user community of the European Synchrotron Radiation Facility (ESRF), a system for the rapid automatic processing of MX diffraction data from single and multiple positions on a single or multiple crystals has been developed. Standard integration and data analysis programs have been incorporated into the ESRF data collection, storage and computing environment, with the final results stored and displayed in an intuitive manner in the ISPyB (information system for protein crystallography beamlines) database, from which they are also available for download. In some cases, experimental phase information can be automatically determined from the processed data. Here, the system is described in detail.
doi:10.1107/S0021889813006195
PMCID: PMC3654316  PMID: 23682196
automation; data processing; macromolecular crystallography; computer programs
5.  The use of workflows in the design and implementation of complex experiments in macromolecular crystallography 
A powerful and easy-to-use workflow environment has been developed at the ESRF for combining experiment control with online data analysis on synchrotron beamlines. This tool provides the possibility of automating complex experiments without the need for expertise in instrumentation control and programming, but rather by accessing defined beamline services.
The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal re­orientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE.
doi:10.1107/S090744491201863X
PMCID: PMC3413211  PMID: 22868763
workflows; automation; data processing; macromolecular crystallography; experimental protocols; characterization; reorientation; radiation damage
6.  MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments 
Journal of Synchrotron Radiation  2010;17(Pt 5):700-707.
MxCuBE is a beamline control environment optimized for the needs of macromolecular crystallography. This paper describes the design of the software and the features that MxCuBE currently provides.
The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.
doi:10.1107/S0909049510020005
PMCID: PMC3025540  PMID: 20724792
automation; macromolecular crystallography; synchrotron beamline control; graphical user interface
7.  Structure of the manganese superoxide dismutase from Deinococcus radiodurans in two crystal forms 
The crystal structures of two crystal forms of manganese superoxide dismutase (Mn-SOD) from the radiation-resistant bacterium D. radiodurans are reported and compared with the crystal structure of Mn-SOD from E. coli.
The structure of the manganese superoxide dismutase (Mn-SOD; DR1279) from Deinococcus radiodurans has been determined in two different crystal forms. Both crystal forms are monoclinic with space group P21. Form I has unit-cell parameters a = 44.28, b = 83.21, c = 59.52 Å, β = 110.18° and contains a homodimer in the asymmetric unit, with structure refinement (R = 16.8%, R free = 23.6%) carried out using data to d min = 2.2 Å. Form II has unit-cell parameters a = 43.57, b = 87.10, c = 116.42 Å, β = 92.1° and an asymmetric unit containing two Mn-SOD homodimers; structure refinement was effected to a resolution of 2.0 Å (R = 17.2%, R free = 22.3%). The resulting structures are compared with that of Mn-SOD from Escherichia coli, with which they are shown to be essentially isostructural.
doi:10.1107/S1744309106008402
PMCID: PMC2222570  PMID: 16582477
manganese superoxide dismutase; Deinococcus radiodurans; radiation resistance

Results 1-7 (7)