Search tips
Search criteria

Results 1-25 (45)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  CceR and AkgR Regulate Central Carbon and Energy Metabolism in Alphaproteobacteria 
mBio  2015;6(1):e02461-14.
Many pathways of carbon and energy metabolism are conserved across the phylogeny, but the networks that regulate their expression or activity often vary considerably among organisms. In this work, we show that two previously uncharacterized transcription factors (TFs) are direct regulators of genes encoding enzymes of central carbon and energy metabolism in the alphaproteobacterium Rhodobacter sphaeroides. The LacI family member CceR (RSP_1663) directly represses genes encoding enzymes in the Entner-Doudoroff pathway, while activating those encoding the F1F0 ATPase and enzymes of the tricarboxylic acid (TCA) cycle and gluconeogenesis, providing a direct transcriptional network connection between carbon and energy metabolism. We identified bases that are important for CceR DNA binding and showed that DNA binding by this TF is inhibited by 6-phosphogluconate. We also showed that the GntR family TF AkgR (RSP_0981) directly activates genes encoding several TCA cycle enzymes, and we identified conditions where its activity is increased. The properties of single and double ΔCceR and ΔAkgR mutants illustrate that these 2 TFs cooperatively regulate carbon and energy metabolism. Comparative genomic analysis indicates that CceR and AkgR orthologs are found in other alphaproteobacteria, where they are predicted to have a conserved function in regulating central carbon metabolism. Our characterization of CceR and AkgR has provided important new insight into the networks that control central carbon and energy metabolism in alphaproteobacteria that can be exploited to modify or engineer new traits in these widespread and versatile bacteria.
To extract and conserve energy from nutrients, cells coordinate a set of metabolic pathways into integrated networks. Many pathways that conserve energy or interconvert metabolites are conserved across cells, but the networks regulating these processes are often highly variable. In this study, we characterize two previously unknown transcriptional regulators of carbon and energy metabolism that are conserved in alphaproteobacteria, a group of abundant, environmentally and biotechnologically important organisms. We identify the genes they regulate, the DNA sequences they recognize, the metabolite that controls the activity of one of the regulators, and conditions where they are required for growth. We provide important new insight into conserved cellular networks that can also be used to improve a variety of hosts for converting feedstock into valuable products.
PMCID: PMC4323418  PMID: 25650399
2.  Global Analysis of Photosynthesis Transcriptional Regulatory Networks 
PLoS Genetics  2014;10(12):e1004837.
Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.
Author Summary
Photosynthetic organisms are among the most abundant life forms on earth. Their unique ability to harvest solar energy and use it to fix atmospheric carbon dioxide is at the foundation of the global food chain. This paper reports the first comprehensive analysis of networks that control expression of photosynthesis genes using Rhodobacter sphaeroides, a microbe that has been studied for decades as a model of solar energy capture and other aspects of the photosynthetic lifestyle. We find a previously unappreciated complexity in the level of control of photosynthetic genes, while identifying new links between photosynthesis and central processes like iron availability. This organism is an ancestor of modern day plants, so our data can inform studies in other photosynthetic organisms and improve our ability to harness solar energy for food and industrial processes.
PMCID: PMC4263372  PMID: 25503406
3.  Revised Sequence and Annotation of the Rhodobacter sphaeroides 2.4.1 Genome 
Journal of Bacteriology  2012;194(24):7016-7017.
The DNA sequences of chromosomes I and II of Rhodobacter sphaeroides strain 2.4.1 have been revised, and the annotation of the entire genomic sequence, including both chromosomes and the five plasmids, has been updated. Errors in the originally published sequence have been corrected, and ∼11% of the coding regions in the original sequence have been affected by the revised annotation.
PMCID: PMC3510577  PMID: 23209255
4.  Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains 
PLoS Biology  2014;12(8):e1001920.
This manuscript calls for an international effort to generate a comprehensive catalog from genome sequences of all the archaeal and bacterial type strains.
Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.
PMCID: PMC4122341  PMID: 25093819
5.  Proteins Needed to Activate a Transcriptional Response to the Reactive Oxygen Species Singlet Oxygen 
mBio  2013;4(1):e00541-12.
Singlet oxygen (1O2) is a reactive oxygen species generated by energy transfer from one or more excited donors to molecular oxygen. Many biomolecules are prone to oxidation by 1O2, and cells have evolved systems to protect themselves from damage caused by this compound. One way that the photosynthetic bacterium Rhodobacter sphaeroides protects itself from 1O2 is by inducing a transcriptional response controlled by ChrR, an anti-σ factor which releases an alternative sigma factor, σE, in the presence of 1O2. Here we report that induction of σE-dependent gene transcription is decreased in the presence of 1O2 when two conserved genes in the σE regulon are deleted, including one encoding a cyclopropane fatty acid synthase homologue (RSP2144) or one encoding a protein of unknown function (RSP1091). Thus, we conclude that RSP2144 and RSP1091 are each necessary to increase σE activity in the presence of 1O2. In addition, we found that unlike in wild-type cells, where ChrR is rapidly degraded when 1O2 is generated, turnover of this anti-σ factor is slowed when cells lacking RSP2144, RSP1091, or both of these proteins are exposed to 1O2. Further, we demonstrate that the organic hydroperoxide tert-butyl hydroperoxide promotes ChrR turnover in both wild-type cells and mutants lacking RSP2144 or RSP1091, suggesting differences in the ways different types of oxidants increase σE activity.
Oxygen serves many crucial functions on Earth; it is produced during photosynthesis and needed for other pathways. While oxygen is relatively inert, it can be converted to reactive oxygen species (ROS) that destroy biomolecules, cause disease, or kill cells. When energy is transferred to oxygen, the ROS singlet oxygen is generated. To understand how singlet oxygen impacts cells, we study the stress response to this ROS in Rhodobacter sphaeroides, a bacterium that, like plants, generates this compound as a consequence of photosynthesis. This paper identifies proteins that activate a stress response to singlet oxygen and shows that they act in a specific response to this ROS. The identified proteins are found in many free-living, symbiotic, or pathogenic bacteria that can encounter singlet oxygen in nature. Thus, our findings provide new information about a stress response to a ROS of broad biological, agricultural, and biomedical importance.
PMCID: PMC3546557  PMID: 23300250
6.  A Rhodobacter sphaeroides Protein Mechanistically Similar to Escherichia coli DksA Regulates Photosynthetic Growth 
mBio  2014;5(3):e01105-14.
DksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacterium Escherichia coli and for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly related Rhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length to E. coli DksA but lacks the Zn finger motif of the E. coli DksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of an E. coli strain lacking the dksA gene and modulates transcription in vitro with E. coli RNA polymerase (RNAP) similarly to E. coli DksA. RSP2654 reduces RNAP-promoter complex stability in vitro with RNAPs from E. coli or R. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity to E. coli DksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsp has distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.
The role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis in Rhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.
PMCID: PMC4010833  PMID: 24781745
7.  Stereochemical Features of Glutathione-dependent Enzymes in the Sphingobium sp. Strain SYK-6 β-Aryl Etherase Pathway* 
The Journal of Biological Chemistry  2014;289(12):8656-8667.
Background: A bacterial β-etherase pathway uses glutathione-dependent enzymes for catabolism of β-ether-linked substructures found in lignin.
Results: Racemic β-ether-linked substructures are stereoselectively converted to thioether-linked monoaromatic compounds by β-etherase pathway enzymes.
Conclusion: Multiple enzymes with complementary stereochemical features are needed to catabolize racemic lignin substructures.
Significance: Understanding the β-etherase pathway metabolism of lignin enhances our potential to use lignin for agricultural, industrial, and biotechnological purposes.
Glutathione-dependent enzymes play important protective, repair, or metabolic roles in cells. In particular, enzymes in the glutathione S-transferase (GST) superfamily function in stress responses, defense systems, or xenobiotic detoxification. Here, we identify novel features of bacterial GSTs that cleave β-aryl ether bonds typically found in plant lignin. Our data reveal several original features of the reaction cycle of these GSTs, including stereospecific substrate recognition and stereoselective formation of β-S-thioether linkages. Products of recombinant GSTs (LigE, LigP, and LigF) are β-S-glutathionyl-α-keto-thioethers that are degraded by a β-S-thioetherase (LigG). All three Lig GSTs produced the ketone product (β-S-glutathionyl-α-veratrylethanone) from an achiral side chain-truncated model substrate (β-guaiacyl-α-veratrylethanone). However, when β-etherase assays were conducted with a racemic model substrate, β-guaiacyl-α-veratrylglycerone, LigE- or LigP-catalyzed reactions yielded only one of two potential product (β-S-glutathionyl-α-veratrylglycerone) epimers, whereas the other diastereomer (differing in configuration at the β-position (i.e. its β-epimer)) was produced only in the LigF-catalyzed reaction. Thus, β-etherase catalysis causes stereochemical inversion of the chiral center, converting a β(R)-substrate to a β(S)-product (LigE and LigP), and a β(S)-substrate to a β(R)-product (LigF). Further, LigG catalyzed glutathione-dependent β-S-thioether cleavage with β-S-glutathionyl-α-veratrylethanone and with β(R)-configured β-S-glutathionyl-α-veratrylglycerone but exhibited no or significantly reduced β-S-thioether-cleaving activity with the β(S)-epimer, demonstrating that LigG is a stereospecific β-thioetherase. We therefore propose that multiple Lig enzymes are needed in this β-aryl etherase pathway in order to cleave the racemic β-ether linkages that are present in the backbone of the lignin polymer.
PMCID: PMC3961688  PMID: 24509858
Bacterial Metabolism; Enzyme Catalysis; Glutathione; Lignin Degradation; Thiol; beta-S-Thioetherase; beta-Aryl Etherase; Glutathione S-Transferase; Stereoselectivity; Stereospecificity
8.  The role of dor gene products in controlling the P2 promoter of the cytochrome c2 gene, cycA, in Rhodobacter sphaeroides 
Microbiology (Reading, England)  2004;150(Pt 6):1893-1899.
This study explores the regulatory networks controlling anaerobic energy production by the facultative phototroph Rhodobacter sphaeroides. The specific aim was to determine why activity of the P2 promoter for the gene (cycA) encoding the essential photosynthetic electron carrier, cytochrome c2, is decreased when the alternative electron acceptor DMSO is added to photosynthetically grown cells. The presence of DMSO is believed to activate the DorR response regulator, which controls expression of proteins required to reduce DMSO. A DorR− strain showed no change in cycA P2 promoter activity when DMSO was added to photosynthetic cells, indicating that DorR was required for the decreased expression in wild-type cells. To test if DorR acted directly at this promoter to change gene expression, recombinant DorR was purified and studied in vitro. Preparations of DorR that were active at other target promoters showed no detectable interaction with cycA P2, suggesting that this protein is not a direct regulator of this promoter. We also found that cycA P2 activity in a DorA− strain was not decreased by the addition of DMSO to photosynthetic cells. A model is presented to explain why the presence of a functional DMSO reductase (DorA) is required for DMSO to decrease cycA P2 expression under photosynthetic conditions.
PMCID: PMC2802839  PMID: 15184575
9.  Mutational analysis of the C-terminal domain of the Rhodobacter sphaeroides response regulator PrrA 
Microbiology (Reading, England)  2005;151(Pt 12):4103-4110.
The Rhodobacter sphaeroides response regulator PrrA directly activates transcription of genes necessary for energy conservation at low O2 tensions and under anaerobic conditions. It is proposed that PrrA homologues contain a C-terminal DNA-binding domain (PrrA-CTD) that lacks significant amino acid sequence similarity to those found in other response regulators. To test this hypothesis, single amino acid substitutions were created at 12 residues in the PrrA-CTD. These mutant PrrA proteins were purified and tested for the ability to be phosphorylated by the low-molecular-mass phosphate donor acetyl phosphate, to activate transcription and to bind promoter DNA. Each mutant PrrA protein accepted phosphate from 32P-labelled acetyl phosphate. At micromolar concentrations of acetyl phosphate-treated wild-type PrrA, a single 20 bp region in the PrrA-dependent cycA P2 promoter was protected from DNase I digestion. Of the mutant PrrA proteins tested, only acetyl phosphate-treated PrrA-N168A and PrrA-I177A protected cycA P2 from DNase I digestion at similar protein concentrations compared to wild-type PrrA. The use of in vitro transcription assays with the PrrA-dependent cycA P2 and puc promoters showed that acetyl phosphate-treated PrrA-N168A produced transcript levels similar to that of wild-type PrrA at comparable protein concentrations. Using concentrations of acetyl phosphate-treated PrrA that are saturating for the wild-type protein, PrrA-H170A and PrrA-I177A produced<45%as much transcript as wild-type PrrA. Under identical conditions, the remaining mutant PrrA proteins produced little or no detectable transcripts from either promoter in vitro. Explanations are presented for why these amino acid side chains in the PrrA-CTD are important for its ability to activate transcription.
PMCID: PMC2800098  PMID: 16339955
11.  Development of the bacterial photosynthetic apparatus 
Current opinion in microbiology  2006;9(6):625-631.
Anoxygenic photosynthetic bacteria have provided us with crucial insights into the process of solar energy capture, pathways of metabolic and societal importance, specialized differentiation of membrane domains, function or assembly of bioenergetic enzymes, and into the genetic control of these and other activities. Recent insights into the organization of this bioenergetic membrane system, the genetic control of this specialized domain of the inner membrane and the process by which potentially photosynthetic and non-photosynthetic cells protect themselves from an important class of reactive oxygen species will provide an unparalleled understanding of solar energy capture and facilitate the design of solar-powered microbial biorefineries.
PMCID: PMC2765710  PMID: 17055774
12.  Benzoyl Coenzyme A Pathway-Mediated Metabolism of meta-Hydroxy-Aromatic Acids in Rhodopseudomonas palustris 
Journal of Bacteriology  2013;195(18):4112-4120.
Photoheterotrophic metabolism of two meta-hydroxy-aromatic acids, meta-, para-dihydroxybenzoate (protocatechuate) and meta-hydroxybenzoate, was investigated in Rhodopseudomonas palustris. When protocatechuate was the sole organic carbon source, photoheterotrophic growth in R. palustris was slow relative to cells using compounds known to be metabolized by the benzoyl coenzyme A (benzoyl-CoA) pathway. R. palustris was unable to grow when meta-hydroxybenzoate was provided as a sole source of organic carbon under photoheterotrophic growth conditions. However, in cultures supplemented with known benzoyl-CoA pathway inducers (para-hydroxybenzoate, benzoate, or cyclohexanoate), protocatechuate and meta-hydroxybenzoate were taken up from the culture medium. Further, protocatechuate and meta-hydroxybenzoate were each removed from cultures containing both meta-hydroxy-aromatic acids at equimolar concentrations in the absence of other organic compounds. Analysis of changes in culture optical density and in the concentration of soluble organic compounds indicated that the loss of these meta-hydroxy-aromatic acids was accompanied by biomass production. Additional experiments with defined mutants demonstrated that enzymes known to participate in the dehydroxylation of para-hydroxybenzoyl-CoA (HbaBCD) and reductive dearomatization of benzoyl-CoA (BadDEFG) were required for metabolism of protocatechuate and meta-hydroxybenzoate. These findings indicate that, under photoheterotrophic growth conditions, R. palustris can degrade meta-hydroxy-aromatic acids via the benzoyl-CoA pathway, apparently due to the promiscuity of the enzymes involved.
PMCID: PMC3754758  PMID: 23852864
13.  Global insights into energetic and metabolic networks in Rhodobacter sphaeroides 
BMC Systems Biology  2013;7:89.
Improving our understanding of processes at the core of cellular lifestyles can be aided by combining information from genetic analyses, high-throughput experiments and computational predictions.
We combined data and predictions derived from phenotypic, physiological, genetic and computational analyses to dissect the metabolic and energetic networks of the facultative photosynthetic bacterium Rhodobacter sphaeroides. We focused our analysis on pathways crucial to the production and recycling of pyridine nucleotides during aerobic respiratory and anaerobic photosynthetic growth in the presence of an organic electron donor. In particular, we assessed the requirement for NADH/NADPH transhydrogenase enzyme, PntAB during respiratory and photosynthetic growth. Using high-throughput phenotype microarrays (PMs), we found that PntAB is essential for photosynthetic growth in the presence of many organic electron donors, particularly those predicted to require its activity to produce NADPH. Utilizing the genome-scale metabolic model iRsp1095, we predicted alternative routes of NADPH synthesis and used gene expression analyses to show that transcripts from a subset of the corresponding genes were conditionally increased in a ΔpntAB mutant. We then used a combination of metabolic flux predictions and mutational analysis to identify flux redistribution patterns utilized in the ΔpntAB mutant to compensate for the loss of this enzyme. Data generated from metabolic and phenotypic analyses of wild type and mutant cells were used to develop iRsp1140, an expanded genome-scale metabolic reconstruction for R. sphaeroides with improved ability to analyze and predict pathways associated with photosynthesis and other metabolic processes.
These analyses increased our understanding of key aspects of the photosynthetic lifestyle, highlighting the added importance of NADPH production under these conditions. It also led to a significant improvement in the predictive capabilities of a metabolic model for the different energetic lifestyles of a facultative organism.
PMCID: PMC3849096  PMID: 24034347
Photosynthesis; Transhydrogenase; Constraint-based analysis; Metabolic modeling; Phenotype microarray; Rhodobacter sphaeroides
14.  Microorganisms and clean energy 
Timothy Donohue and Richard Cogdell discuss how microbiology can contribute towards the provision of clean solutions to the world′s energy needs.
PMCID: PMC2605648  PMID: 17042110
15.  Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides 
Microbiology (Reading, England)  2008;154(Pt 1):296-305.
Formaldehyde is an intermediate formed during the metabolism of methanol or other methylated compounds. Many Gram-negative bacteria generate formaldehyde from methanol via a periplasmic pyrroloquinoline quinone (PQQ)-dependent dehydrogenase in which the α subunit of an α2β2 tetramer has catalytic activity. The genome of the facultative formaldehyde-oxidizing bacterium Rhodobacter sphaeroides encodes XoxF, a homologue of the catalytic subunit of a proposed PQQ-containing dehydrogenase of Paracoccus denitrificans. R. sphaeroides xoxF is part of a gene cluster that encodes periplasmic c-type cytochromes, including CycI, isocytochrome c2 and CycB (a cyt c553i homologue), as well as adhI, a glutathione-dependent formaldehyde dehydrogenase (GSH-FDH), and gfa, a homologue of a glutathione–formaldehyde activating enzyme (Gfa). To test the roles of XoxF, CycB and Gfa in formaldehyde metabolism by R. sphaeroides, we monitored photosynthetic growth with methanol as a source of formaldehyde and whole-cell methanol-dependent oxygen uptake. Our data show that R. sphaeroides cells lacking XoxF or CycB do not exhibit methanol-dependent oxygen uptake and lack the capacity to utilize methanol as a sole photosynthetic carbon source. These results suggest that both proteins are required for formaldehyde metabolism. R. sphaeroides Gfa is not essential to activate formaldehyde, as cells lacking gfa are capable of both methanol-dependent oxygen uptake and growth with methanol as a photosynthetic carbon source.
PMCID: PMC2440690  PMID: 18174148
16.  Convergence of the Transcriptional Responses to Heat Shock and Singlet Oxygen Stresses 
PLoS Genetics  2012;8(9):e1002929.
Cells often mount transcriptional responses and activate specific sets of genes in response to stress-inducing signals such as heat or reactive oxygen species. Transcription factors in the RpoH family of bacterial alternative σ factors usually control gene expression during a heat shock response. Interestingly, several α-proteobacteria possess two or more paralogs of RpoH, suggesting some functional distinction. We investigated the target promoters of Rhodobacter sphaeroides RpoHI and RpoHII using genome-scale data derived from gene expression profiling and the direct interactions of each protein with DNA in vivo. We found that the RpoHI and RpoHII regulons have both distinct and overlapping gene sets. We predicted DNA sequence elements that dictate promoter recognition specificity by each RpoH paralog. We found that several bases in the highly conserved TTG in the −35 element are important for activity with both RpoH homologs; that the T-9 position, which is over-represented in the RpoHI promoter sequence logo, is critical for RpoHI–dependent transcription; and that several bases in the predicted −10 element were important for activity with either RpoHII or both RpoH homologs. Genes that are transcribed by both RpoHI and RpoHII are predicted to encode for functions involved in general cell maintenance. The functions specific to the RpoHI regulon are associated with a classic heat shock response, while those specific to RpoHII are associated with the response to the reactive oxygen species, singlet oxygen. We propose that a gene duplication event followed by changes in promoter recognition by RpoHI and RpoHII allowed convergence of the transcriptional responses to heat and singlet oxygen stress in R. sphaeroides and possibly other bacteria.
Author Summary
An important property of living systems is their ability to survive under conditions of stress such as increased temperature or the presence of reactive oxygen species. Central to the function of these stress responses are transcription factors that activate specific sets of genes needed for this response. Despite the central role of stress responses across all forms of life, the processes driving their organization and evolution across organisms are poorly understood. This paper uses genomic, computational, and mutational analyses to dissect stress responses controlled by two proteins that are each members of the RpoH family of alternative σ factors. RpoH family members usually control gene expression during a heat shock response. However, the photosynthetic bacterium Rhodobacter sphaeroides and several other α-proteobacteria possess two or more paralogs of RpoH, suggesting some functional distinction. Our findings predict that a gene duplication event followed by changes in DNA recognition by RpoHI and RpoHII allowed convergence of the transcriptional responses to heat and singlet oxygen stress in R. sphaeroides and possibly other bacteria. Our approach and findings should interest those studying the evolution of transcription factors or the signal transduction pathways that control stress responses.
PMCID: PMC3441632  PMID: 23028346
17.  Nanolitre-scale crystallization using acoustic liquid-transfer technology 
Acoustic droplet ejection achieves precise, tipless, non-invasive transfer of diverse aqueous solutions, enabling nanolitre-scale crystallization trials. The rapid and scalable technique demonstrated successful crystal growth with diverse targets in drop volumes as small as 20 nl.
Focused acoustic energy allows accurate and precise liquid transfer on scales from picolitre to microlitre volumes. This technology was applied in protein crystallization, successfully transferring a diverse set of proteins as well as hundreds of precipitant solutions from custom and commercial crystallization screens and achieving crystallization in drop volumes as small as 20 nl. Only higher concentrations (>50%) of 2-­methyl-2,4-pentanediol (MPD) appeared to be systematically problematic in delivery. The acoustic technology was implemented in a workflow, successfully reproducing active crystallization systems and leading to the discovery of crystallization conditions for previously uncharacterized proteins. The technology offers compelling advantages in low-nanolitre crystallization trials by providing significant reagent savings and presenting seamless scalability for those crystals that require larger volume optimization experiments using the same vapor-diffusion format.
PMCID: PMC3413209  PMID: 22868754
acoustic liquid transfer; nanolitre-scale crystallization
18.  Extracytoplasmic function σ factors of the widely distributed group ECF41 contain a fused regulatory domain 
MicrobiologyOpen  2012;1(2):194-213.
Bacteria need signal transducing systems to respond to environmental changes. Next to one- and two-component systems, alternative σ factors of the extra-cytoplasmic function (ECF) protein family represent the third fundamental mechanism of bacterial signal transduction. A comprehensive classification of these proteins identified more than 40 phylogenetically distinct groups, most of which are not experimentally investigated. Here, we present the characterization of such a group with unique features, termed ECF41. Among analyzed bacterial genomes, ECF41 σ factors are widely distributed with about 400 proteins from 10 different phyla. They lack obvious anti-σ factors that typically control activity of other ECF σ factors, but their structural genes are often predicted to be cotranscribed with carboxymuconolactone decarboxylases, oxidoreductases, or epimerases based on genomic context conservation. We demonstrate for Bacillus licheniformis and Rhodobacter sphaeroides that the corresponding genes are preceded by a highly conserved promoter motif and are the only detectable targets of ECF41-dependent gene regulation. In contrast to other ECF σ factors, proteins of group ECF41 contain a large C-terminal extension, which is crucial for σ factor activity. Our data demonstrate that ECF41 σ factors are regulated by a novel mechanism based on the presence of a fused regulatory domain.
PMCID: PMC3426412  PMID: 22950025
Anti-σ factor; ECF σ factor; signal transduction
19.  Aspects of Rhodobacter sphaeroides ChrR required for stimuli to promote dissociation of σE/ChrR complexes 
Journal of molecular biology  2011;407(4):477-491.
In the photosynthetic bacterium Rhodobacter sphaeroides, a transcriptional response to the reactive oxygen species singlet oxygen (1O2) is mediated by ChrR, a zinc metalloprotein that binds to and inhibits activity of the alternative sigma factor, σE. We provide evidence that 1O2 promotes dissociation of σE from ChrR to activate transcription in vivo. To identify what is required for 1O2 to promote dissociation of σE/ChrR complexes, we analyzed the in vivo properties of variant ChrR proteins with amino acid changes in conserved residues of the C-terminal cupin-like domain (ChrR-CLD). We found that 1O2 was unable to promote detectable dissociation of σE/ChrR complexes when the ChrR-CLD zinc ligands (His141, His143, Glu147, and His177) were substituted with alanine, even though individual substitutions caused a 2- to 10-fold decrease in zinc affinity for this domain relative to that of wild-type ChrR (Kd ∼4.6 × 10−10 M). We conclude that the side chains of these invariant residues play a crucial role in the response to 1O2. Additionally, we found that cells containing variant ChrR proteins with single amino acid substitutions at Cys187 or Cys189 exhibited σE activity similar to those containing wild-type ChrR when exposed to 1O2, suggesting that these thiol side chains are not required for 1O2 to induce σE activity in vivo. Finally, we found that the same aspects of R. sphaeroides ChrR needed for a response to 1O2 are required for dissociation of σE/ChrR in the presence of the organic hydroperoxide, tert-butyl hydroperoxide (t-BOOH).
PMCID: PMC3061837  PMID: 21295582
Bacterial signal transduction; metalloproteins; Oxidative stress; Reactive oxygen species (ROS); zinc
20.  Pathways Involved in Reductant Distribution during Photobiological H2 Production by Rhodobacter sphaeroides ▿ § †  
Applied and Environmental Microbiology  2011;77(20):7425-7429.
We used global transcript analyses and mutant studies to investigate the pathways that impact H2 production in the photosynthetic bacterium Rhodobacter sphaeroides. We found that H2 production capacity is related to the levels of expression of the nitrogenase and hydrogenase enzymes and the enzymes of the Calvin-Benson-Bassham pathway.
PMCID: PMC3194864  PMID: 21856820
21.  iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network 
BMC Systems Biology  2011;5:116.
Rhodobacter sphaeroides is one of the best studied purple non-sulfur photosynthetic bacteria and serves as an excellent model for the study of photosynthesis and the metabolic capabilities of this and related facultative organisms. The ability of R. sphaeroides to produce hydrogen (H2), polyhydroxybutyrate (PHB) or other hydrocarbons, as well as its ability to utilize atmospheric carbon dioxide (CO2) as a carbon source under defined conditions, make it an excellent candidate for use in a wide variety of biotechnological applications. A genome-level understanding of its metabolic capabilities should help realize this biotechnological potential.
Here we present a genome-scale metabolic network model for R. sphaeroides strain 2.4.1, designated iRsp1095, consisting of 1,095 genes, 796 metabolites and 1158 reactions, including R. sphaeroides-specific biomass reactions developed in this study. Constraint-based analysis showed that iRsp1095 agreed well with experimental observations when modeling growth under respiratory and phototrophic conditions. Genes essential for phototrophic growth were predicted by single gene deletion analysis. During pathway-level analyses of R. sphaeroides metabolism, an alternative route for CO2 assimilation was identified. Evaluation of photoheterotrophic H2 production using iRsp1095 indicated that maximal yield would be obtained from growing cells, with this predicted maximum ~50% higher than that observed experimentally from wild type cells. Competing pathways that might prevent the achievement of this theoretical maximum were identified to guide future genetic studies.
iRsp1095 provides a robust framework for future metabolic engineering efforts to optimize the solar- and nutrient-powered production of biofuels and other valuable products by R. sphaeroides and closely related organisms.
PMCID: PMC3152904  PMID: 21777427
22.  An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity 
PLoS Genetics  2010;6(9):e1001129.
Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.
Author Summary
Leaf-cutter ants form massive subterranean colonies containing millions of workers that harvest hundreds of kilograms of leaves each year. They use these leaves to grow a mutualistic fungus that serves as the colony's primary food source. By farming fungus in specialized garden chambers, these dominant Neotropical herbivores facilitate rapid large-scale plant biomass conversion. Our understanding of this degradation process, and the responsible microbial community, is limited. In this study, we track the degradation of plant polymers in leaf-cutter ant fungus gardens and characterize the microbial community potentially mediating this process. We show that cellulose and hemicelluloses are degraded in the fungus gardens and that a previously unknown microbial community containing a diversity of bacteria is present. Metagenomic analysis of this community's genetic content revealed many genes predicted to encode enzymes capable of degrading plant cell walls. The ability of leaf-cutter ants to maintain an external microbial community with high plant biomass-degrading capacity likely represents a key step in the establishment of these ants as widespread, dominant insect herbivores in the Neotropics. This system is an important model for understanding how microbial communities degrade plant biomass in natural systems and has direct relevancy for bioenergy, given recent interest in cellulosic biofuels.
PMCID: PMC2944797  PMID: 20885794
23.  Reconstruction of the Core and Extended Regulons of Global Transcription Factors 
PLoS Genetics  2010;6(7):e1001027.
The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across α-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual α-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 α-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the α-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks.
Author Summary
An important property of living systems is the use of regulatory networks to appropriately program gene expression. Central to the function of regulatory networks are transcription factors that regulate gene expression by binding to specific DNA sequences. Despite the central role of these regulatory networks, the processes driving their organization and evolution across organisms are poorly understood. This paper describes the use of comparative genomics and high-throughput approaches to predict the organization and evolution of transcriptional regulatory networks across a large group of species. We focused on regulatory networks controlling cellular responses to changes in O2 levels because this signal has major consequences on many biological systems. Our analysis predicts that related regulatory networks share a core set of target genes across diverse species while other target genes vary according to the organism's specific lifestyle. Our approach of defining transcriptional regulatory networks across a wide range of organisms should be of general utility to studying similar questions in other systems.
PMCID: PMC2908626  PMID: 20661434
24.  chipD: a web tool to design oligonucleotide probes for high-density tiling arrays 
Nucleic Acids Research  2010;38(Web Server issue):W321-W325.
chipD is a web server that facilitates design of DNA oligonucleotide probes for high-density tiling arrays, which can be used in a number of genomic applications such as ChIP-chip or gene-expression profiling. The server implements a probe selection algorithm that takes as an input, in addition to the target sequences, a set of parameters that allow probe design to be tailored to specific applications, protocols or the array manufacturer’s requirements. The algorithm optimizes probes to meet three objectives: (i) probes should be specific; (ii) probes should have similar thermodynamic properties; and (iii) the target sequence coverage should be homogeneous and avoid significant gaps. The output provides in a text format, the list of probe sequences with their genomic locations, targeted strands and hybridization characteristics. chipD has been used successfully to design tiling arrays for bacteria and yeast. chipD is available at
PMCID: PMC2896189  PMID: 20529880
25.  Interactions Between the Rhodobacter sphaeroides ECF Sigma Factor, σE, and its Anti-sigma Factor, ChrR 
Journal of molecular biology  2004;341(2):345-360.
Rhodobacter sphaeroides σE is a member of the extra cytoplasmic function sigma factor (ECF) family, whose members have been shown to regulate gene expression in response to a variety of signals. The functions of ECF family members are commonly regulated by a specific, reversible interaction with a cognate anti-sigma factor. In R. sphaeroides, σE activity is inhibited by ChrR, a member of a newly discovered family of zinc containing anti-sigma factors. We used gel filtration chromatography to gain insight into the mechanism by which ChrR inhibits σE activity. We found that formation of the σE:ChrR complex inhibits the ability of σE to form a stable complex with core RNA polymerase. Since the σE:ChrR complex inhibits the ability of the sigma factor to bind RNA polymerase, we sought to identify amino acid substitutions in σE that altered the sensitivity of this sigma factor to inhibition by ChrR. This analysis identified single amino acid changes in conserved region 2.1 of σE that either increased or decreased the sensitivity of σE for inhibition by ChrR. Many of the amino acid residues that alter the sensitivity of σE to ChrR are located within regions known to be important for interacting with core RNA polymerase in other members of the s70 superfamily. Our results suggest a model where solvent-exposed residues with region 2.1 of σE interact with ChrR to sterically occlude this sigma factor from binding core RNA polymerase and to inhibit target gene expression.
PMCID: PMC2796631  PMID: 15276828
sigma factor; anti-sigma factor; transcription; regulation; Rhodobacter sphaeroides

Results 1-25 (45)