PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Representing Kidney Development Using the Gene Ontology 
PLoS ONE  2014;9(6):e99864.
Gene Ontology (GO) provides dynamic controlled vocabularies to aid in the description of the functional biological attributes and subcellular locations of gene products from all taxonomic groups (www.geneontology.org). Here we describe collaboration between the renal biomedical research community and the GO Consortium to improve the quality and quantity of GO terms describing renal development. In the associated annotation activity, the new and revised terms were associated with gene products involved in renal development and function. This project resulted in a total of 522 GO terms being added to the ontology and the creation of approximately 9,600 kidney-related GO term associations to 940 UniProt Knowledgebase (UniProtKB) entries, covering 66 taxonomic groups. We demonstrate the impact of these improvements on the interpretation of GO term analyses performed on genes differentially expressed in kidney glomeruli affected by diabetic nephropathy. In summary, we have produced a resource that can be utilized in the interpretation of data from small- and large-scale experiments investigating molecular mechanisms of kidney function and development and thereby help towards alleviating renal disease.
doi:10.1371/journal.pone.0099864
PMCID: PMC4062467  PMID: 24941002
2.  Structural and biochemical characterization of a trapped coenzyme A adduct of Caenorhabditis elegans glucosamine-6-phosphate N-acetyltransferase 1 
Glucosamine-6-phosphate N-acetyltransferase is an essential enzyme of the eukaryotic UDP-GlcNAc biosynthetic pathway. A crystal structure at 1.55 Å resolution revealed a highly unusual covalent product complex and biochemical studies investigated the function of a fully conserved active-site cysteine.
Glucosamine-6-phosphate N-acetyltransferase 1 (GNA1) produces GlcNAc-6-phosphate from GlcN-6-phosphate and acetyl coenzyme A. Early mercury-labelling experiments implicated a conserved cysteine in the reaction mechanism, whereas recent structural data appear to support a mechanism in which this cysteine plays no role. Here, two crystal structures of Caenorhabditis elegans GNA1 are reported, revealing an unusual covalent complex between this cysteine and the coenzyme A product. Mass-spectrometric and reduction studies showed that this inactive covalent complex can be reactivated through reduction, yet mutagenesis of the cysteine supports a previously reported bi-bi mechanism. The data unify the apparently contradictory earlier reports on the role of a cysteine in the GNA1 active site.
doi:10.1107/S0907444912019592
PMCID: PMC3413214  PMID: 22868768
carbohydrates; glycobiology; Caenorhabditis elegans; glucosamine-6-phosphate N-acetyltransferase; coenzyme A adduct; mechanism
3.  The Herpes Simplex Virus Type 1 US11 Protein Binds the Coterminal UL12, UL13, and UL14 RNAs and Regulates UL13 Expression In Vivo 
Journal of Virology  2002;76(16):8090-8100.
The US11 protein of herpes simplex virus type 1 (HSV-1) is a small, highly basic phosphoprotein expressed at late times during infection. US11 localizes to the nucleolus in infected cells, can associate with ribosomes, and has been shown to bind RNA. The RNA substrates of US11 identified thus far have no apparent role in the virus lytic cycle, so we set out to identify a novel, biologically relevant RNA substrate(s) for this protein in HSV-1-infected cells. We designed a reverse transcriptase PCR-based protocol that allowed specific selection of a 600-bp RNA binding partner for US11. This RNA sequence, designated 12/14, is present in the coterminal HSV-1 mRNAs UL12, UL13, and UL14. We show that the binding of US11 to 12/14 is sequence-specific and mediated by the C-terminal domain of the protein. To elucidate the role of US11 in the virus life cycle, we infected cells with wild-type virus, a cosmid-reconstructed US11 HSV-1 null mutant, and a cosmid-reconstructed wild-type virus and analyzed expression of UL12, -13, and -14 during a time course of infection. These experiments revealed that this interaction has biological activity; at early times of infection, US11 down-regulates UL13 protein kinase mRNA and protein.
doi:10.1128/JVI.76.16.8090-8100.2002
PMCID: PMC155164  PMID: 12134014

Results 1-3 (3)