Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Combined imaging biomarkers for therapy evaluation in glioblastoma multiforme: correlating sodium MRI and F-18 FLT PET on a voxel-wise basis 
Magnetic resonance imaging  2012;30(9):10.1016/j.mri.2012.05.011.
We evaluate novel magnetic resonance imaging (MRI) and positron emission tomography (PET) quantitative imaging biomarkers and associated multimodality, serial-time-point analysis methodologies, with the ultimate aim of providing clinically feasible, predictive measures for early assessment of response to cancer therapy. A focus of this work is method development and an investigation of the relationship between the information content of the two modalities. Imaging studies were conducted on subjects who were enrolled in glioblastoma multiforme (GBM) therapeutic clinical trials. Data were acquired, analyzed and displayed using methods that could be adapted for clinical use. Subjects underwent dynamic [18F]fluorothymidine (F-18 FLT) PET, sodium (23Na) MRI and 3-T structural MRI scans at baseline (before initiation of therapy), at an early time point after beginning therapy and at a late follow-up time point after therapy. Sodium MRI and F-18 FLT PET images were registered to the structural MRI. F-18 FLT PET tracer distribution volumes and sodium MRI concentrations were calculated on a voxel-wise basis to address the heterogeneity of tumor physiology. Changes in, and differences between, these quantities as a function of scan timing were tracked.
While both modalities independently show a change in tissue status as a function of scan time point, results illustrate that the two modalities may provide complementary information regarding tumor progression and response. Additionally, tumor status changes were found to vary in different regions of tumor. The degree to which these methods are useful for GBM therapy response assessment and particularly for differentiating true progression from pseudoprogression requires additional patient data and correlation of these imaging biomarker changes with clinical outcome.
PMCID: PMC3823553  PMID: 22819581
Gleoblastoma Multiforme; Therapy Response assessment; Sodium MRI; FLT PET
2.  Tri-tert-butyl 3-oxo-4-oxa-1,8,11-tri­aza­spiro­[5.6]dodecane-1,8,11-tri­acetate 
The title compound, C26H45N3O8, is a bicyclic mol­ecule; the seven-membered diazepane ring has a twisted-chair conformation and the six-membered morpholine ring has a boat conformation.
PMCID: PMC2850304  PMID: 20354302
3.  ZD6474, a Multitargeted Inhibitor for Receptor Tyrosine Kinases, Suppresses Growth of Gliomas Expressing an Epidermal Growth Factor Receptor Mutant, EGFRvIII, in the Brain 
Molecular cancer therapeutics  2010;9(4):929-941.
Epidermal growth factor receptor (EGFR) vIII is a mutated EGFR that is frequently overexpressed in glioblastomas and implicated in response to receptor tyrosine kinase inhibitors. In this study, we investigate the effect of ZD6474 (ZACTIMA, vandetanib), a dual inhibitor for vascular endothelial growth factor receptor 2 and EGFR on growth and angiogenesis of gliomas expressing EGFRvIII. We used two glioma xenograft models, U87MG cells overexpressing EGFRvIII and short-term cultured primary glioma GBM8 cells with EGFRvIII. ZD6474 inhibited tumor growth and angiogenesis and induced cell apoptosis in various brain gliomas. Moreover, significant inhibition of EGFRvIII-expressing U87MG and GBM8 gliomas was observed compared with their controls. Magnetic resonance imaging analysis using the apparent diffusion coefficient and three-dimensional T2*weighed measurements validated ZD6474 inhibition on tumor growth and angiogenesis in EGFRvIII-expressing GBM8 gliomas. Mechanistically, ZD6474 shows better inhibition of cell growth and survival of U87MG/EGFRvIII, GBM6, and GBM8 cells that express EGFRvIII than U87MG or GBM14 cells that have nondetectable EGFRvIII through attenuation of activated phosphorylation of signal transducer and activator of transcription 3, Akt, and Bcl-XL expression. Albeit in lesser extent, ZD6474 also displays suppressions of U87MG/EGFR and GBM12 cells that overexpress wild-type EGFR. Additionally, ZD6474 inhibits activation of extracellular signal-regulated kinase 1/2 in both types of cells, and expression of a constitutively active phosphoinositide 3-kinases partially rescued ZD6474 inhibition in U87MG/EGFRvIII cells. Taken together, these data show that ZD6474 significantly inhibited growth and angiogenesis of gliomas expressing EGFRvIII by specifically blocking EGFRvIII-activated signaling mediators, suggesting a potential application of ZD6474 in treatments for glioblastomas that overexpress EGFRvIII.
PMCID: PMC2874950  PMID: 20371720
4.  Magnetic Resonance Imaging–Guided Adoptive Cellular Immunotherapy of Central Nervous System Tumors With a T1 Contrast Agent 
Dendritic cells (DCs) are the most effective antigen-presenting cells (APCs) and are used in a variety of immunotherapeutic approaches. Adoptive cellular immunotherapy (ACI) of cancer using DCs has attracted much interest due to their capacity to promote immunity in prophylactic and therapeutic protocols. As one approach, DCs are injected into patients or tumor-bearing animals, to trigger specific antitumor immunity. In that framework, several approaches to DC delivery have been reported, including direct intratumoral injection; this has yielded positive but variable results. The underlying reasons for this have not been fully determined, but major hypotheses include technical difficulties in delivering cells into tumors and tumor-mediated immunosuppression. Image-guided ACI offers the potential to establish that DCs are efficiently delivered to the tumor site, which might eliminate some of the variability. Therefore, we developed highly sensitive methods for monitoring the injection or trafficking of DCs into tumors using a clinically approved formulation of a gadolinium-based magnetic resonance imaging (MRI) contrast agent, Gd(III)-HP-DO3A (ProHance™). We determined the labeling efficiency of DCs with this formulation; that labeling DCs with this agent did not inhibit expression of surface markers important for antigen presentation and activation of naive T cells; that their capacity to interact with natural killer (NK) cells was not reduced; and that their migration was not diminished. Further, we determined that ProHance™-labeled DCs can be effectively imaged in vivo in established central nervous system tumors.
PMCID: PMC2924576  PMID: 19544372
dendritic cells; magnetic resonance imaging; immunotherapy; glioma; central nervous system; cell trafficking

Results 1-4 (4)