Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  One-step immunopurification and lectinochemical characterization of the Duffy atypical chemokine receptor from human erythrocytes 
Glycoconjugate Journal  2012;29(2-3):93-105.
Duffy antigen/receptor for chemokines (DARC) is a glycosylated seven-transmembrane protein acting as a blood group antigen, a chemokine binding protein and a receptor for Plasmodium vivax malaria parasite. It is present on erythrocytes and endothelial cells of postcapillary venules. The N-terminal extracellular domain of the Duffy glycoprotein carries Fya/Fyb blood group antigens and Fy6 linear epitope recognized by monoclonal antibodies. Previously, we have shown that recombinant Duffy protein expressed in K562 cells has three N-linked oligosaccharide chains, which are mainly of complex-type. Here we report a one-step purification method of Duffy protein from human erythrocytes. DARC was extracted from erythrocyte membranes in the presence of 1% n-dodecyl-β-D-maltoside (DDM) and 0.05% cholesteryl hemisuccinate (CHS) and purified by affinity chromatography using immobilized anti-Fy6 2C3 mouse monoclonal antibody. Duffy glycoprotein was eluted from the column with synthetic DFEDVWN peptide containing epitope for 2C3 monoclonal antibody. In this single-step immunoaffinity purification method we obtained highly purified DARC, which migrates in SDS-polyacrylamide gel as a major diffuse band corresponding to a molecular mass of 40–47 kDa. In ELISA purified Duffy glycoprotein binds anti-Duffy antibodies recognizing epitopes located on distinct regions of the molecule. Results of circular dichroism measurement indicate that purified DARC has a high content of α-helical secondary structure typical for chemokine receptors. Analysis of DARC glycans performed by means of lectin blotting and glycosidase digestion suggests that native Duffy N-glycans are mostly triantennary complex-type, terminated with α2-3- and α2-6-linked sialic acid residues with bisecting GlcNAc and α1-6-linked fucose at the core.
PMCID: PMC3311851  PMID: 22246380
Duffy antigen; Immunopurification; Chemokine receptor; Glycoproteomics; N-glycans; Lectins
2.  Two penta­dehydro­peptides with different configurations of the ΔPhe residues 
Comparison of the crystal structures of two penta­dehydro­peptides containing ΔPhe residues, namely (Z,Z)-N-(tert-butoxy­carbonyl)­glycyl-α,β-phenyl­alanyl­glycyl-α,β-phenyl­alanyl­glycine (or Boc0–Gly1–ΔZPhe2–Gly3–ΔZPhe4–Gly5–OH) methanol solvate, C29H33N5O8·CH4O, (I), and (E,E)-N-(tert-butoxy­carbonyl)­glycyl-α,β-phenyl­alanyl­glycyl-α,β-phenyl­alanyl­glycine (or Boc0–Gly1–ΔEPhe2–Gly3–ΔEPhe4–Gly5–OH), C29H33N5O8, (II), indicates that the ΔZPhe residue is a more effective inducer of folded structures than the ΔEPhe residue. The values of the torsion angles ϕ and ψ show the presence of two type-III′ β-turns at the ΔZPhe residues and one type-II β-turn at the ΔEPhe residue. All amino acids are linked trans to each other in both peptides. β-Turns present in the peptides are stabilized by intra­molecular 4→1 hydrogen bonds. Mol­ecules in both structures form two-dimensional hydrogen-bond networks parallel to the (100) plane.
PMCID: PMC2855584  PMID: 20203407

Results 1-2 (2)