PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Giant Micelles of Organoplatinum(II) Gemini Amphiphiles 
Organoplatinum(II) gemini amphiphiles with two different chain lengths are synthesized and characterized. Self-assembly at the air-water interface is investigated as a function of chain length and reduction in surface area by using Langmuir-trough techniques. The Langmuir-trough experiments lead to a conjecture that surface aggregates may be the adsorbing units. Atomic force microscopy on the transferred Langmuir-Schaefer films reveals spontaneous formation of wormlike micellar aggregates. A shear-induced transition and alignment are proposed for the observed effects.
doi:10.1021/la800136p
PMCID: PMC3974412  PMID: 18439034
2.  Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test 
Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1:1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories – a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome.
doi:10.1107/S0108768111042868
PMCID: PMC3222142  PMID: 22101543
3.  Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test 
The results of the fifth blind test of crystal structure prediction, which show important success with more challenging large and flexible molecules, are presented and discussed.
Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1:1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories – a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome.
doi:10.1107/S0108768111042868
PMCID: PMC3222142  PMID: 22101543
prediction; blind test; polymorph; crystal structure prediction
4.  Crystal Structure Prediction (CSP) of Flexible Molecules using Parallel Genetic Algorithms with a Standard Force Field 
Journal of computational chemistry  2009;30(13):1973-1985.
This paper describes the application of our distributed computing framework for crystal structure prediction (CSP), Modified Genetic Algorithms for Crystal and Cluster Prediction (MGAC) to predict the crystal structure of flexible molecules using the General Amber Force Field (GAFF) and the CHARMM program. The MGAC distributed computing framework which includes a series of tightly integrated computer programs for generating the molecule’s force field, sampling crystal structures using a distributed parallel genetic algorithm, local energy minimization of the structures followed by the classifying, sorting and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential.
doi:10.1002/jcc.21189
PMCID: PMC2720422  PMID: 19130496
5.  Self-Assembly of a Triangle-Shaped, Hexaplatinum-Incorporated, Supramolecular Amphiphile in Solution and at Interfaces 
The self-assembly and characterization of a novel supramolecular amphiphile built from a new 60° amphiphilic precursor that incorporates hydrophilic platinum(II) metals and hydrophobic dioctadecyloxy chains is reported. The amphiphilic macrocycle and its precursor compound have been characterized by multinuclear NMR spectroscopy, ESI-MS, and other standard techniques. The coacervate morphology of the amphiphile at the liquid–liquid interface has been studied by using confocal optical microscopy and in situ Raman spectroscopy. The self-assembly of the amphiphilic macrocycle at the air–water interface has been investigated through Langmuir-trough techniques. The study indicates the possible formation of surface micelle-like aggregates. The disparity between the experimental molecular areas and those derived from molecular models support the idea of aggregation. AFM images of the surface aggregates show the formation of a flat topology with arbitrary ridgelike patterns. Reasonable molecular-packing arrangements are proposed to explain the molecular organization within the observed structures.
doi:10.1002/chem.200900595
PMCID: PMC2765193  PMID: 19655346
aggregates; metallacycles; self-assembly supramolecular amphiphiles; surface micelles
6.  Tedanolide C: a potent new 18-membered ring cytotoxic macrolide isolated from the Papua New Guinea marine sponge Ircinia sp 
The Journal of organic chemistry  2006;71(6):2510-2513.
Cytotoxicity-guided fractionation of the crude methanol extract of a marine sponge, Ircinia sp., yielded tedanolide C (1), a new 18-membered macrolide. The structure was solved by interpreting NMR and MS data, and the relative stereochemistry was determined from a combination of homo and heteronuclear coupling constants in conjunction with molecular modeling. Compound 1 exhibited potent cytotoxicity against HCT-116 cells in vitro. Cell cycle analysis showed that treatment of cells with compound 1 arrested cells in S-phase.
doi:10.1021/jo052285+
PMCID: PMC2533847  PMID: 16526806

Results 1-6 (6)