Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Final storage of radioactive cesium by pollucite hydrothermal synthesis 
Scientific Reports  2014;4:4195.
The Fukushima nuclear accident has highlighted the importance of finding a better final storage method for radioactive cesium species. Cs is highly soluble in water, and can easily exchange with other alkali ions in zeolites or clays to form stable complexes. However, Cs+ is released from Cs+ complexes into water when surrounded by an excess of water. Pollucite may be the best final storage option for Cs+, but its typical synthesis requires heating to about 1200°C in air. Here, we show that the hydrothermal synthesis of pollucite can be completed at 300°C in three hours from any zeolite or clay. Furthermore, our procedure does not require ion exchange before synthesis. Radioactive Cs is usually found in complexes with clays. At that time, this method only requires calcium hydroxide, water, and three hours of hydrothermal synthesis, so the process is both inexpensive and practical for large-scale application. Pollucite is an analog of analcime zeolite, and contains a channel system 2.8 Å in diameter, which is formed by 6-oxygen rings. As the diameter of Cs+ is 3.34 Å and each Cs+ exists independently within a separate portion of the channel, Cs+ cannot exit the pollucite framework without breaking it.
PMCID: PMC3935194  PMID: 24569302
2.  Determining the structure of a benzene7.2-silicalite-1 zeolite using a single-crystal X-ray method 
An orthorhombic benzene-silicalite-1 single crystal was obtained from a monoclinic twin crystal, and the structure was determined by a single-crystal method for the first time.
A simple method for preparing orthorhombic single crystals of benzene-silicalite-1 was developed. A silicalite-1 crystal was pressed with a weight of 2 g along the +c and −c crystallographic axes while the temperature was increased to 473 K. The temperature was then slowly reduced to 313 K, and these heating and cooling steps were repeated three times. After the orthorhombic single crystals adsorbed benzene, the crystal structure of the resulting benzene-silicalite-1 was determined. There were two kinds of benzene molecules in the asymmetric unit. One was located at the intersection of the straight channels and the sinusoidal channels with the benzene ring parallel to the ac plane. The other benzene was located in the middle of the straight channel.
PMCID: PMC3222141  PMID: 22101540
ZSM-5; MFI; silicalite-1; benzene-silicalite-1

Results 1-2 (2)