Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Cell-free expression of a functional pore-only sodium channel 
•Cell-free expression of functional bacterial Na channel in mg quantities achieved.•The described method can be adopted for efficient site-directed isotope labelling.•This high throughput production enables bio-spectroscopic investigations.
Voltage-gated sodium channels participate in the propagation of action potentials in excitable cells. Eukaryotic Navs are pseudo homotetrameric polypeptides, comprising four repeats of six transmembrane segments (S1–S6). The first four segments form the voltage-sensing domain and S5 and S6 create the pore domain with the selectivity filter. Prokaryotic Navs resemble these characteristics, but are truly tetrameric. They can typically be efficiently synthesized in bacteria, but production in vitro with cell-free synthesis has not been demonstrated. Here we report the cell-free expression and purification of a prokaryotic tetrameric pore-only sodium channel. We produced milligram quantities of the functional channel protein as characterized by size-exclusion chromatography, infrared spectroscopy and electrophysiological recordings. Cell-free expression enables advanced site-directed labelling, post-translational modifications, and special solubilization schemes. This enables next-generation biophysical experiments to study the principle of sodium ion selectivity and transport in sodium channels.
PMCID: PMC4430601  PMID: 25770647
Cell-free expression; Membrane protein; Sodium channel
2.  Visualizing a protein quake with time resolved X-ray scattering at a free electron laser 
Nature methods  2014;11(9):923-926.
A ‘protein quake’ describes the hypothesis that proteins rapidly dissipate energy through quake like structural motions. Here we measure ultrafast structural changes in the Blastochloris viridis photosynthetic reaction center following multi-photon excitation using time-resolved wide angle X-ray scattering at an X-ray free electron laser. A global conformational change arises within picoseconds, which precedes the propagation of heat through the protein. This motion is damped within a hundred picoseconds.
PMCID: PMC4149589  PMID: 25108686
3.  Deciphering Solution Scattering Data with Experimentally Guided Molecular Dynamics Simulations 
Time-resolved X-ray solution scattering is an increasingly popular method to measure conformational changes in proteins. Extracting structural information from the resulting difference X-ray scattering data is a daunting task. We present a method in which the limited but precious information encoded in such scattering curves is combined with the chemical knowledge of molecular force fields. The molecule of interest is then refined toward experimental data using molecular dynamics simulation. Therefore, the energy landscape is biased toward conformations that agree with experimental data. We describe and verify the method, and we provide an implementation in GROMACS.
PMCID: PMC4325560  PMID: 25688181
4.  Signal amplification and transduction in phytochrome photosensors 
Nature  2014;509(7499):245-248.
Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light sensing kinases that control diverse cellular functions in plants, bacteria, and fungi.1-9 Bacterial phytochromes consist of a photosensory core and a C-terminal regulatory domain.10,11 Structures of photosensory cores are reported in the resting state12-18 and conformational responses to light activation have been proposed in the vicinity of the chromophore.19-23 However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here, we report crystal and solution structures of the resting and active states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures reveal an open and closed form of the dimeric protein for the signalling and resting state, respectively. This nanometre scale rearrangement is controlled by refolding of an evolutionarily conserved “tongue”, which is in contact with the chromophore. The findings reveal an unusual mechanism where atomic scale conformational changes around the chromophore are first amplified into an Ångström scale distance change in the tongue, and further grow into a nanometre scale conformational signal. The structural mechanism is a blueprint for understanding how the sensor proteins connect to the cellular signalling network.
PMCID: PMC4015848  PMID: 24776794
5.  MARTINI bead form factors for the analysis of time-resolved X-ray scattering of proteins 
Journal of Applied Crystallography  2014;47(Pt 4):1190-1198.
Form factors for X-ray scattering calculations from coarse-grained MARTINI protein models are derived. The reliability at different levels of coarse-graining is evaluated and weighed against the gain in computational speed of the coarser models.
Time-resolved small- and wide-angle X-ray scattering (SAXS and WAXS) methods probe the structural dynamics of proteins in solution. Although technologically advanced, these methods are in many cases limited by data interpretation. The calculation of X-ray scattering profiles is computationally demanding and poses a bottleneck for all SAXS/WAXS-assisted structural refinement and, in particular, for the analysis of time-resolved data. A way of speeding up these calculations is to represent biomolecules as collections of coarse-grained scatterers. Here, such coarse-graining schemes are presented and discussed and their accuracies examined. It is demonstrated that scattering factors coincident with the popular MARTINI coarse-graining scheme produce reliable difference scattering in the range 0 < q < 0.75 Å−1. The findings are promising for future attempts at X-ray scattering data analysis, and may help to bridge the gap between time-resolved experiments and their interpretation.
PMCID: PMC4119947  PMID: 25242909
X-ray solution scattering; proteins; coarse-graining; MARTINI; structural dynamics; small-angle X-ray scattering (SAXS); wide-angle X-ray scattering (WAXS); protein structure refinement
6.  Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches 
Time-resolved structural studies of proteins have undergone several significant developments during the last decade. Recent developments using time-resolved X-ray methods, such as time-resolved Laue diffraction, low-temperature intermediate trapping, time-resolved wide-angle X-ray scattering and time-resolved X-ray absorption spectroscopy, are reviewed.
Proteins undergo conformational changes during their biological function. As such, a high-resolution structure of a protein’s resting conformation provides a starting point for elucidating its reaction mechanism, but provides no direct information concerning the protein’s conformational dynamics. Several X-ray methods have been developed to elucidate those conformational changes that occur during a protein’s reaction, including time-resolved Laue diffraction and intermediate trapping studies on three-dimensional protein crystals, and time-resolved wide-angle X-ray scattering and X-ray absorption studies on proteins in the solution phase. This review emphasizes the scope and limitations of these complementary experimental approaches when seeking to understand protein conformational dynamics. These methods are illustrated using a limited set of examples including myoglobin and haemoglobin in complex with carbon monoxide, the simple light-driven proton pump bacteriorhodopsin, and the superoxide scavenger superoxide reductase. In conclusion, likely future developments of these methods at synchrotron X-ray sources and the potential impact of emerging X-ray free-electron laser facilities are speculated upon.
PMCID: PMC2824530  PMID: 20164644
time-resolved diffraction; structural biology; protein structural dynamics; Laue diffraction; kinetic crystallography; WAXS; XAS
7.  Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography 
Nature Communications  2013;4:2911.
Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 Å resolution and determine its serial femtosecond crystallography structure to 3.5 Å resolution. Although every microcrystal is exposed to a dose of 33 MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.
Serial femtosecond crystallography is an X-ray free-electron-laser-based method that uses X-ray bursts to determine protein structures. Here the authors present the structure of a photosynthetic reaction centre, an integral membrane protein, achieved with no sign of X-ray-induced radiation damage.
PMCID: PMC3905732  PMID: 24352554

Results 1-7 (7)