PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Structure of the Archaeoglobus fulgidus orphan ORF AF1382 determined by sulfur SAD from a moderately diffracting crystal 
The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using data collected from a moderately diffracting crystal and 1.9 Å synchrotron X-rays.
The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using a moderately diffracting crystal and 1.9 Å wavelength synchrotron X-rays. AF1382 was selected as a structural genomics target by the Southeast Collaboratory for Structural Genomics (SECSG) since sequence analyses showed that it did not belong to the Pfam-A database and thus could represent a novel fold. The structure was determined by exploiting longer wavelength X-rays and data redundancy to increase the anomalous signal in the data. AF1382 is a 95-­residue protein containing five S atoms associated with four methionine residues and a single cysteine residue that yields a calculated Bijvoet ratio (ΔF anom/F) of 1.39% for 1.9 Å wavelength X-rays. Coupled with an average Bijvoet redundancy of 25 (two 360° data sets), this produced an excellent electron-density map that allowed 69 of the 95 residues to be automatically fitted. The S-SAD model was then manually completed and refined (R = 23.2%, R free = 26.8%) to 2.3 Å resolution (PDB entry 3o3k). High-resolution data were subsequently collected from a better diffracting crystal using 0.97 Å wavelength synchrotron X-rays and the S-SAD model was refined (R = 17.9%, R free = 21.4%) to 1.85 Å resolution (PDB entry 3ov8). AF1382 has a winged-helix–turn–helix structure common to many DNA-binding proteins and most closely resembles the N-terminal domain (residues 1–82) of the Rio2 kinase from A. fulgidus, which has been shown to bind DNA, and a number of MarR-family transcriptional regulators, suggesting a similar DNA-binding function for AF1382. The analysis also points out the advantage gained from carrying out data reduction and structure determination on-site while the crystal is still available for further data collection.
doi:10.1107/S0907444912026212
PMCID: PMC3489105  PMID: 22948926
AF1382; orphan ORFs; sulfur SAD; Archaeoglobus fulgidus
2.  NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants 
Nature  2012;486(7402):228-232.
Salicylic acid (SA) is a plant immune signal produced upon pathogen challenge to induce systemic acquired resistance (SAR). It is the only major plant hormone for which the receptor has not been firmly identified. SAR in Arabidopsis requires the transcription cofactor NPR1 (nonexpresser of PR genes 1), whose degradation serves as a molecular switch for SAR. Here we show that NPR1 paralogues, NPR3 and NPR4, are SA receptors that bind SA with different affinities and function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner. Accordingly, the npr3 npr4 mutant accumulates higher levels of NPR1 and is insensitive to SAR induction. Moreover, this mutant is defective in pathogen effector-triggered programmed cell death and immunity. Our study reveals the mechanism of SA perception in determining cell death and survival in response to pathogen challenge.
doi:10.1038/nature11162
PMCID: PMC3376392  PMID: 22699612
3.  Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation 
Cell host & microbe  2012;11(6):587-596.
Phytopathogens can manipulate plant hormone signaling to access nutrients and counteract defense responses. Pseudomonas syringae produces coronatine, a toxin that mimics the plant hormone jasmonic acid isoleucine and promotes opening of stomata for bacterial entry, bacterial growth in the apoplast, systemic susceptibility and disease symptoms. We examined the mechanisms underlying coronatine-mediated virulence and show that coronatine activates three homologous NAC transcription factor (TF) genes, ANAC019, ANAC055 and ANAC072, through direct activity of the TF, MYC2. Genetic characterization of NAC TF mutants demonstrates that these TFs mediate coronatine-induced stomatal reopening and bacterial propagation in both local and systemic tissues by inhibiting the accumulation of the key plant immune signal salicylic acid (SA). These NAC TFs exert this inhibitory effect by repressing ICS1 and activating BSMT1, genes involved in SA biosynthesis and metabolism, respectively. Thus, a signaling cascade by which coronatine confers its multiple virulence activities has been elucidated.
doi:10.1016/j.chom.2012.04.014
PMCID: PMC3404825  PMID: 22704619
4.  The Crystal Structure Analysis of Group B Streptococcus Sortase C1: A Model for the ‘lid’ Movement upon Substrate Binding 
Journal of molecular biology  2011;414(4):563-577.
A unique feature of the class-C-type sortases, enzymes essential for Gram-positive pilus biogenesis, is the presence of a flexible ‘lid’ anchored in the active site. However, the mechanistic details of the ‘lid’ displacement, suggested to be a critical prelude for enzyme catalysis, are not yet known. This is partly due to the absence of enzyme-substrate and enzyme-inhibitor complex crystal structures. We have recently described the crystal structures of the Streptococcus agalactiae SAG2603 V/R sortase SrtC1 in two space groups (type II and type III) and that of its ‘lid’ mutant and proposed a role of the ‘lid’ as a protector of the active site hydrophobic environment. Here, we report the crystal structures of SAG2603 V/R sortase C1 in a different space group (type I) and that of its complex with a small-molecule cysteine protease inhibitor. We observe that the catalytic Cys residue is covalently linked to the small molecule inhibitor without lid displacement. However, the type I structure provides a view of the sortase SrtC1 lid displacement, while having structural elements similar to a substrate-sorting motif suitably positioned in the active site. We propose that these major conformational changes, seen in the presence of a substrate mimic in the active site, may represent universal features of class C sortase substrate recognition and enzyme activation.
doi:10.1016/j.jmb.2011.10.017
PMCID: PMC3230703  PMID: 22033482
5.  A multi-dataset data-collection strategy produces better diffraction data 
Theoretical analysis and experimental validation prove that a multi-dataset data-collection strategy produces better diffraction data. The readiness test is a simple and sensitive method for X-ray data-collection system evaluation and a benchmark.
A multi-dataset (MDS) data-collection strategy is proposed and analyzed for macromolecular crystal diffraction data acquisition. The theoretical analysis indicated that the MDS strategy can reduce the standard deviation (background noise) of diffraction data compared with the commonly used single-dataset strategy for a fixed X-ray dose. In order to validate the hypothesis experimentally, a data-quality evaluation process, termed a readiness test of the X-ray data-collection system, was developed. The anomalous signals of sulfur atoms in zinc-free insulin crystals were used as the probe to differentiate the quality of data collected using different data-collection strategies. The data-collection results using home-laboratory-based rotating-anode X-ray and synchrotron X-ray systems indicate that the diffraction data collected with the MDS strategy contain more accurate anomalous signals from sulfur atoms than the data collected with a regular data-collection strategy. In addition, the MDS strategy offered more advantages with respect to radiation-damage-sensitive crystals and better usage of rotating-anode as well as synchrotron X-rays.
doi:10.1107/S0108767311037469
PMCID: PMC3211246  PMID: 22011470
multi-dataset data-collection strategy; readiness test
6.  Phytopathogen type III effector weaponry and their plant targets 
Current opinion in plant biology  2008;11(4):396-403.
Summary
Phytopathogenic bacteria suppress plant innate immunity and promote pathogenesis by injecting proteins called type III effectors into plant cells using a type III protein secretion system. These type III effectors use at least three major strategies to alter host responses. One strategy is to alter host protein turnover, either by direct cleavage or by modulating ubiquitination and targeting to the 26S proteasome. Another strategy involves alteration of RNA metabolism by transcriptional activation or ADP-ribosylation of RNA-binding proteins. A third major strategy is to inhibit the kinases involved in plant defence signalling, either by removing phosphates or by direct inhibition. The wide array of strategies bacterial pathogens employ to suppress innate immunity suggest that circumvention of innate immunity is critical for bacterial pathogenicity of plants.
doi:10.1016/j.jbi.2008.06.007
PMCID: PMC2570165  PMID: 18657470
7.  Pseudomonas syringae HrpJ Is a Type III Secreted Protein That Is Required for Plant Pathogenesis, Injection of Effectors, and Secretion of the HrpZ1 Harpin 
Journal of Bacteriology  2006;188(17):6060-6069.
The bacterial plant pathogen Pseudomonas syringae requires a type III protein secretion system (TTSS) to cause disease. The P. syringae TTSS is encoded by the hrp-hrc gene cluster. One of the genes within this cluster, hrpJ, encodes a protein with weak similarity to YopN, a type III secreted protein from the animal pathogenic Yersinia species. Here, we show that HrpJ is secreted in culture and translocated into plant cells by the P. syringae pv. tomato DC3000 TTSS. A DC3000 hrpJ mutant, UNL140, was greatly reduced in its ability to cause disease symptoms and multiply in Arabidopsis thaliana. UNL140 exhibited a reduced ability to elicit a hypersensitive response (HR) in nonhost tobacco plants. UNL140 was unable to elicit an AvrRpt2- or AvrB1-dependent HR in A. thaliana but maintained its ability to secrete AvrB1 in culture via the TTSS. Additionally, UNL140 was defective in its ability to translocate the effectors AvrPto1, HopB1, and AvrPtoB. Type III secretion assays showed that UNL140 secreted HrpA1 and AvrPto1 but was unable to secrete HrpZ1, a protein that is normally secreted in culture in relatively large amounts, into culture supernatants. Taken together, our data indicate that HrpJ is a type III secreted protein that is important for pathogenicity and the translocation of effectors into plant cells. Based on the failure of UNL140 to secrete HrpZ1, HrpJ may play a role in controlling type III secretion, and in its absence, specific accessory proteins, like HrpZ1, may not be extracellularly localized, resulting in disabled translocation of effectors into plant cells.
doi:10.1128/JB.00718-06
PMCID: PMC1595357  PMID: 16923873
8.  The Pseudomonas syringae HopPtoV Protein Is Secreted in Culture and Translocated into Plant Cells via the Type III Protein Secretion System in a Manner Dependent on the ShcV Type III Chaperone 
Journal of Bacteriology  2004;186(11):3621-3630.
The bacterial plant pathogen Pseudomonas syringae depends on a type III protein secretion system and the effector proteins that it translocates into plant cells to cause disease and to elicit the defense-associated hypersensitive response on resistant plants. The availability of the P. syringae pv. tomato DC3000 genome sequence has resulted in the identification of many novel effectors. We identified the hopPtoV effector gene on the basis of its location next to a candidate type III chaperone (TTC) gene, shcV, and within a pathogenicity island in the DC3000 chromosome. A DC3000 mutant lacking ShcV was unable to secrete detectable amounts of HopPtoV into culture supernatants or translocate HopPtoV into plant cells, based on an assay that tested whether HopPtoV-AvrRpt2 fusions were delivered into plant cells. Coimmunoprecipitation and Saccharomyces cerevisiae two-hybrid experiments showed that ShcV and HopPtoV interact directly with each other. The ShcV binding site was delimited to an N-terminal region of HopPtoV between amino acids 76 and 125 of the 391-residue full-length protein. Our results demonstrate that ShcV is a TTC for the HopPtoV effector. DC3000 overexpressing ShcV and HopPtoV and DC3000 mutants lacking either HopPtoV or both ShcV and HopPtoV were not significantly impaired in disease symptoms or bacterial multiplication in planta, suggesting that HopPtoV plays a subtle role in pathogenesis or that other effectors effectively mask the contribution of HopPtoV in plant pathogenesis.
doi:10.1128/JB.186.11.3621-3630.2004
PMCID: PMC415770  PMID: 15150250

Results 1-8 (8)