PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1 
IUCrJ  2014;1(Pt 5):305-317.
Femtosecond X-ray crystallography allows structural analysis of a difficult-to-crystallize fusion protein that is a potential component of a candidate HIV-1 subunit vaccine.
CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli. The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to a resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.
doi:10.1107/S2052252514014900
PMCID: PMC4174873  PMID: 25295172
X-ray crystallography; femtosecond nanocrystallography; HIV-1; gp41; membrane-proximal region; cholera toxin B subunit; crystallization; free-electron lasers
2.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography 
Nature communications  2014;5:3309.
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously-renewed source of material for serial femtosecond crystallography. Data collected from sub-10 μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
doi:10.1038/ncomms4309
PMCID: PMC4061911  PMID: 24525480
3.  Serial Femtosecond Crystallography of G Protein-Coupled Receptors 
Science (New York, N.Y.)  2013;342(6165):1521-1524.
X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.
doi:10.1126/science.1244142
PMCID: PMC3902108  PMID: 24357322
4.  The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein 
The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence.
Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.
doi:10.1107/S0907444913001546
PMCID: PMC3640468  PMID: 23633585
GFP-like proteins; enhanced cyan fluorescent proteins; ECFP; chromophores; directed evolution; structure-guided protein engineering; FRET; quantum yield
5.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography 
Science (New York, N.Y.)  2012;337(6092):362-364.
Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.
doi:10.1126/science.1217737
PMCID: PMC3788707  PMID: 22653729
6.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser 
Science (New York, N.Y.)  2012;339(6116):227-230.
The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
doi:10.1126/science.1229663
PMCID: PMC3786669  PMID: 23196907
7.  Time-resolved protein nanocrystallography using an X-ray free-electron laser 
Aquila, Andrew | Hunter, Mark S. | Doak, R. Bruce | Kirian, Richard A. | Fromme, Petra | White, Thomas A. | Andreasson, Jakob | Arnlund, David | Bajt, Saša | Barends, Thomas R. M. | Barthelmess, Miriam | Bogan, Michael J. | Bostedt, Christoph | Bottin, Hervé | Bozek, John D. | Caleman, Carl | Coppola, Nicola | Davidsson, Jan | DePonte, Daniel P. | Elser, Veit | Epp, Sascha W. | Erk, Benjamin | Fleckenstein, Holger | Foucar, Lutz | Frank, Matthias | Fromme, Raimund | Graafsma, Heinz | Grotjohann, Ingo | Gumprecht, Lars | Hajdu, Janos | Hampton, Christina Y. | Hartmann, Andreas | Hartmann, Robert | Hau-Riege, Stefan | Hauser, Günter | Hirsemann, Helmut | Holl, Peter | Holton, James M. | Hömke, André | Johansson, Linda | Kimmel, Nils | Kassemeyer, Stephan | Krasniqi, Faton | Kühnel, Kai-Uwe | Liang, Mengning | Lomb, Lukas | Malmerberg, Erik | Marchesini, Stefano | Martin, Andrew V. | Maia, Filipe R.N.C. | Messerschmidt, Marc | Nass, Karol | Reich, Christian | Neutze, Richard | Rolles, Daniel | Rudek, Benedikt | Rudenko, Artem | Schlichting, Ilme | Schmidt, Carlo | Schmidt, Kevin E. | Schulz, Joachim | Seibert, M. Marvin | Shoeman, Robert L. | Sierra, Raymond | Soltau, Heike | Starodub, Dmitri | Stellato, Francesco | Stern, Stephan | Strüder, Lothar | Timneanu, Nicusor | Ullrich, Joachim | Wang, Xiaoyu | Williams, Garth J. | Weidenspointner, Georg | Weierstall, Uwe | Wunderer, Cornelia | Barty, Anton | Spence, John C. H. | Chapman, Henry N.
Optics Express  2012;20(3):2706-2716.
We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
doi:10.1364/OE.20.002706
PMCID: PMC3413412  PMID: 22330507
(170.7160) Ultrafast technology; (170.7440) X-ray imaging; (140.3450) Laser-induced chemistry; (140.7090) Ultrafast lasers; (170.0170) Medical optics and biotechnology
8.  Improving the accuracy of macromolecular structure refinement at 7 Å resolution 
SUMMARY
In X-ray crystallography, molecular replacement and subsequent refinement is challenging at low resolution. We compared refinement methods using synchrotron diffraction data of photosystem I at 7.4 Å resolution, starting from different initial models with increasing deviations from the known high-resolution structure. Standard refinement spoiled the initial models moving them further away from the true structure and leading to high Rfree-values. In contrast, DEN-refinement improved even the most distant starting model as judged by Rfree, atomic root-mean-square differences to the true structure, significance of features not included in the initial model, and connectivity of electron density. The best protocol was DEN-refinement with initial segmented rigid-body refinement. For the most distant initial model, the fraction of atoms within 2 Å of the true structure improved from 24% to 60%. We also found a significant correlation between Rfree-values and the accuracy of the model, suggesting that Rfree is useful even at low resolution.
doi:10.1016/j.str.2012.04.020
PMCID: PMC3380535  PMID: 22681901
DEN refinement; membrane protein; low-resolution refinement; simulated annealing; free R value
9.  Femtosecond X-ray protein nanocrystallography 
Chapman, Henry N. | Fromme, Petra | Barty, Anton | White, Thomas A. | Kirian, Richard A. | Aquila, Andrew | Hunter, Mark S. | Schulz, Joachim | DePonte, Daniel P. | Weierstall, Uwe | Doak, R. Bruce | Maia, Filipe R. N. C. | Martin, Andrew V. | Schlichting, Ilme | Lomb, Lukas | Coppola, Nicola | Shoeman, Robert L. | Epp, Sascha W. | Hartmann, Robert | Rolles, Daniel | Rudenko, Artem | Foucar, Lutz | Kimmel, Nils | Weidenspointner, Georg | Holl, Peter | Liang, Mengning | Barthelmess, Miriam | Caleman, Carl | Boutet, Sébastien | Bogan, Michael J. | Krzywinski, Jacek | Bostedt, Christoph | Bajt, Saša | Gumprecht, Lars | Rudek, Benedikt | Erk, Benjamin | Schmidt, Carlo | Hömke, André | Reich, Christian | Pietschner, Daniel | Strüder, Lothar | Hauser, Günter | Gorke, Hubert | Ullrich, Joachim | Herrmann, Sven | Schaller, Gerhard | Schopper, Florian | Soltau, Heike | Kühnel, Kai-Uwe | Messerschmidt, Marc | Bozek, John D. | Hau-Riege, Stefan P. | Frank, Matthias | Hampton, Christina Y. | Sierra, Raymond G. | Starodub, Dmitri | Williams, Garth J. | Hajdu, Janos | Timneanu, Nicusor | Seibert, M. Marvin | Andreasson, Jakob | Rocker, Andrea | Jönsson, Olof | Svenda, Martin | Stern, Stephan | Nass, Karol | Andritschke, Robert | Schröter, Claus-Dieter | Krasniqi, Faton | Bott, Mario | Schmidt, Kevin E. | Wang, Xiaoyu | Grotjohann, Ingo | Holton, James M. | Barends, Thomas R. M. | Neutze, Richard | Marchesini, Stefano | Fromme, Raimund | Schorb, Sebastian | Rupp, Daniela | Adolph, Marcus | Gorkhover, Tais | Andersson, Inger | Hirsemann, Helmut | Potdevin, Guillaume | Graafsma, Heinz | Nilsson, Björn | Spence, John C. H.
Nature  2011;470(7332):73-77.
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1-3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
doi:10.1038/nature09750
PMCID: PMC3429598  PMID: 21293373
10.  Time-resolved protein nanocrystallography using an X-ray free-electron laser 
Aquila, Andrew | Hunter, Mark S | Bruce Doak, R. | Kirian, Richard A. | Fromme, Petra | White, Thomas A. | Andreasson, Jakob | Arnlund, David | Bajt, Saša | Barends, Thomas R. M. | Barthelmess, Miriam | Bogan, Michael J. | Bostedt, Christoph | Bottin, Hervé | Bozek, John D. | Caleman, Carl | Coppola, Nicola | Davidsson, Jan | DePonte, Daniel P. | Elser, Veit | Epp, Sascha W. | Erk, Benjamin | Fleckenstein, Holger | Foucar, Lutz | Frank, Matthias | Fromme, Raimund | Graafsma, Heinz | Grotjohann, Ingo | Gumprecht, Lars | Hajdu, Janos | Hampton, Christina Y. | Hartmann, Andreas | Hartmann, Robert | Hau-Riege, Stefan | Hauser, Günter | Hirsemann, Helmut | Holl, Peter | Holton, James M. | Hömke, André | Johansson, Linda | Kimmel, Nils | Kassemeyer, Stephan | Krasniqi, Faton | Kühnel, Kai-Uwe | Liang, Mengning | Lomb, Lukas | Malmerberg, Erik | Marchesini, Stefano | Martin, Andrew V. | Maia, Filipe R.N.C. | Messerschmidt, Marc | Nass, Karol | Reich, Christian | Neutze, Richard | Rolles, Daniel | Rudek, Benedikt | Rudenko, Artem | Schlichting, Ilme | Schmidt, Carlo | Schmidt, Kevin E. | Schulz, Joachim | Seibert, M. Marvin | Shoeman, Robert L. | Sierra, Raymond | Soltau, Heike | Starodub, Dmitri | Stellato, Francesco | Stern, Stephan | Strüder, Lothar | Timneanu, Nicusor | Ullrich, Joachim | Wang, Xiaoyu | Williams, Garth J. | Weidenspointner, Georg | Weierstall, Uwe | Wunderer, Cornelia | Barty, Anton | Spence, John C. H | Chapman, Henry N.
Optics express  2012;20(3):2706-2716.
We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
PMCID: PMC3413412  PMID: 22330507
11.  Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments 
Biochimica et biophysica acta  2008;1777(7-8):605-612.
The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphate, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10–15 c-subunits is commonly thought to drive rotation of the rotor moiety (c10–14γε) relative to stator moiety (α3β3δab2). Here we report the isolation and crystallization of the c14-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 Å. Though ATP synthase was not previously known to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revealed that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase.
doi:10.1016/j.bbabio.2008.05.009
PMCID: PMC3408889  PMID: 18515064
ATP synthase; crystallization; membrane proteins; chlorophyll; carotenoid
12.  Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals 
A complete set of structure factors has been extracted from hundreds of thousands of femtosecond X-ray diffraction patterns from randomly oriented Photosystem I membrane protein nanocrystals, using the Monte Carlo method of intensity integration. The data, collected at the Linac Coherent Light Source, are compared with conventional single-crystal data collected at a synchrotron source, and the quality of each data set was found to be similar.
A complete set of structure factors has been extracted from hundreds of thousands of femtosecond single-shot X-ray microdiffraction patterns taken from randomly oriented nanocrystals. The method of Monte Carlo integration over crystallite size and orientation was applied to experimental data from Photosystem I nanocrystals. This arrives at structure factors from many partial reflections without prior knowledge of the particle-size distribution. The data were collected at the Linac Coherent Light Source (the first hard-X-ray laser user facility), to which was fitted a hydrated protein nanocrystal injector jet, according to the method of serial crystallography. The data are single ‘still’ diffraction snapshots, each from a different nanocrystal with sizes ranging between 100 nm and 2 µm, so the angular width of Bragg peaks was dominated by crystal-size effects. These results were compared with single-crystal data recorded from large crystals of Photosystem I at the Advanced Light Source and the quality of the data was found to be similar. The implications for improving the efficiency of data collection by allowing the use of very small crystals, for radiation-damage reduction and for time-resolved diffraction studies at room temperature are discussed.
doi:10.1107/S0108767310050981
PMCID: PMC3066792  PMID: 21325716
nanocrystals; femtosecond diffraction; free-electron lasers; Monte Carlo methods; protein microdiffraction
13.  Atomic Resolution X-ray Structure of the Substrate Recognition Domain of Higher Plant Ribulose-bisphosphate Carboxylase/Oxygenase (Rubisco) Activase* 
The Journal of Biological Chemistry  2011;286(41):35683-35688.
Background: Rubisco activase has been linked to the inhibition of net photosynthesis upon warming.
Results: The structure of the C-terminal domain adopts an unusually elongated shape.
Conclusions: Reactivation of Rubisco may involve movement of a paddle-like extension.
Significance: This work will aid in gaining a better understanding of Rubisco regulation.
The rapid release of tight-binding inhibitors from dead-end ribulose-bisphosphate carboxylase/oxygenase (Rubisco) complexes requires the activity of Rubisco activase, an AAA+ ATPase that utilizes chemo-mechanical energy to catalyze the reactivation of Rubisco. Activase is thought to play a central role in coordinating the rate of CO2 fixation with the light reactions of photosynthesis. Here, we present a 1.9 Å crystal structure of the C-domain core of creosote activase. The fold consists of a canonical four-helix bundle, from which a paddle-like extension protrudes that entails a nine-turn helix lined by an irregularly structured peptide strand. The residues Lys-313 and Val-316 involved in the species-specific recognition of Rubisco are located near the tip of the paddle. An ionic bond between Lys-313 and Glu-309 appears to stabilize the glycine-rich end of the helix. Structural superpositions onto the distant homolog FtsH imply that the paddles extend away from the hexameric toroid in a fan-like fashion, such that the hydrophobic sides of each blade bearing Trp-302 are facing inward and the polar sides bearing Lys-313 and Val-316 are facing outward. Therefore, we speculate that upon binding, the activase paddles embrace the Rubisco cylinder by placing their hydrophobic patches near the partner protein. This model suggests that conformational adjustments at the remote end of the paddle may relate to selectivity in recognition, rather than specific ionic contacts involving Lys-313. Additionally, the superpositions predict that the catalytically critical Arg-293 does not interact with the bound nucleotide. Hypothetical ring-ring stacking and peptide threading models for Rubisco reactivation are briefly discussed.
doi:10.1074/jbc.C111.289595
PMCID: PMC3195603  PMID: 21880724
ATPases; Bioenergetics; Chloroplast; Crystal Structure; Rubisco; AAA; Carbon Fixation
14.  Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography 
Nature Communications  2013;4:2911.
Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 Å resolution and determine its serial femtosecond crystallography structure to 3.5 Å resolution. Although every microcrystal is exposed to a dose of 33 MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.
Serial femtosecond crystallography is an X-ray free-electron-laser-based method that uses X-ray bursts to determine protein structures. Here the authors present the structure of a photosynthetic reaction centre, an integral membrane protein, achieved with no sign of X-ray-induced radiation damage.
doi:10.1038/ncomms3911
PMCID: PMC3905732  PMID: 24352554

Results 1-14 (14)