Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Fine mapping of RBG2, a quantitative trait locus for resistance to Burkholderia glumae, on rice chromosome 1 
Molecular Breeding  2015;35:15.
Bacterial grain rot (BGR), caused by the bacterial pathogen Burkholderia glumae, is a destructive disease of rice. At anthesis, rice panicles are attacked by the pathogen, and the infection causes unfilled or aborted grains, reducing grain yield and quality. Thus, increasing the level of BGR resistance is an important objective for rice breeding. A quantitative trait locus (QTL) on rice chromosome 1 that controls BGR resistance was previously detected in backcross inbred lines (BILs) derived from a cross between Kele, a resistant traditional lowland cultivar (indica) that originated in India, and Hitomebore, a susceptible modern lowland cultivar (temperate japonica) from Japan. Further genetic analyses using a BC3F6 population derived from a cross between a resistant BIL (BC2F5) and Hitomebore confirmed that a QTL for BGR resistance was located on the long arm of chromosome 1. To define more precisely the chromosomal region underlying this QTL, we identified nine BC2F6 plants in which recombination occurred near the QTL. Substitution mapping using homozygous recombinant and nonrecombinant plants demonstrated that the QTL, here designated as Resistance to Burkholderia glumae 2 (RBG2), was located in a 502-kb interval defined by simple sequence repeat markers RM1216 and RM11727.
Electronic supplementary material
The online version of this article (doi:10.1007/s11032-015-0192-x) contains supplementary material, which is available to authorized users.
PMCID: PMC4298652  PMID: 25620876
Oryza sativa L.; Disease resistance; Bacterial grain rot; QTL; Linkage analysis; Panicle blight
2.  Suppressive Potential of Paenibacillus Strains Isolated from the Tomato Phyllosphere against Fusarium Crown and Root Rot of Tomato 
Microbes and Environments  2014;29(2):168-177.
The suppressive potentials of Bacillus and Paenibacillus strains isolated from the tomato phyllosphere were investigated to obtain new biocontrol candidates against Fusarium crown and root rot of tomato. The suppressive activities of 20 bacterial strains belonging to these genera were examined using seedlings and potted tomato plants, and two Paenibacillus strains (12HD2 and 42NP7) were selected as biocontrol candidates against the disease. These two strains suppressed the disease in the field experiment. Scanning electron microscopy revealed that the treated bacterial cells colonized the root surface, and when the roots of the seedlings were treated with strain 42NP7 cells, the cell population was maintained on the roots for at least for 4 weeks. Although the bacterial strains had no direct antifungal activity against the causal pathogen in vitro, an increase was observed in the antifungal activities of acetone extracts from tomato roots treated with the cells of both bacterial strains. Furthermore, RT-PCR analysis verified that the expression of defense-related genes was induced in both the roots and leaves of seedlings treated with the bacterial cells. Thus, the root-colonized cells of the two Paenibacillus strains were considered to induce resistance in tomato plants, which resulted in the suppression of the disease.
PMCID: PMC4103523  PMID: 24920171
Fusarium crown and root rot; Fusarium oxysporum f. sp. radicis-lycopersici; Phyllosphere bacteria; Paenibacillus; induced resistance
3.  Bacterial Cytochrome P450 System Catabolizing the Fusarium Toxin Deoxynivalenol 
Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (kcat/Km) of 6.4 mM−1 s−1. The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat.
PMCID: PMC3591976  PMID: 23275503
4.  Bacillus thuringiensis Suppresses Bacterial wilt Disease Caused by Ralstonia solanacearum with Systemic Induction of Defense-Related Gene Expression in Tomato 
Microbes and Environments  2012;28(1):128-134.
Bacillus thuringiensis is a naturally abundant Gram-positive bacterium and a well-known, effective bio-insecticide. Recently, B. thuringiensis has attracted considerable attention as a potential biological control agent for the suppression of plant diseases. In this study, the bacterial wilt disease-suppressing activity of B. thuringiensis was examined in tomato plants. Treatment of tomato roots with B. thuringiensis culture followed by challenge inoculation with Ralstonia solanacearum suppressed the development of wilt symptoms to less than one third of the control. This disease suppression in tomato plants was reproduced by pretreating their roots with a cell-free filtrate (CF) that had been fractionated from B. thuringiensis culture by centrifugation and filtration. In tomato plants challenge-inoculated with R. solanacearum after pretreatment with CF, the growth of R. solanacearum in stem tissues clearly decreased, and expression of defense-related genes such as PR-1, acidic chitinase, and β-1,3-glucanase was induced in stem and leaf tissues. Furthermore, the stem tissues of tomato plants with their roots were pretreated with CF exhibited resistance against direct inoculation with R. solanacearum. Taken together, these results suggest that treatment of tomato roots with the CF of B. thuringiensis systemically suppresses bacterial wilt through systemic activation of the plant defense system.
PMCID: PMC4070697  PMID: 23257909
Bacillus thuringiensis; induced resistance; Ralstonia solanacearum; tomato
5.  Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants 
AMB Express  2012;2:40.
To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.
PMCID: PMC3444367  PMID: 22856640
Biodegradable plastic; Leaf surface; Phylloplane fungi; Mulch film; PCR-DGGE
6.  Combined Analyses of Bacterial, Fungal and Nematode Communities in Andosolic Agricultural Soils in Japan 
Microbes and Environments  2012;27(1):72-79.
We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.
PMCID: PMC4036027  PMID: 22223474
bacteria-fungi-nematode community; andosols; PCR-DGGE; two-way cluster analysis
7.  Phyllosphere yeasts rapidly break down biodegradable plastics 
AMB Express  2011;1:44.
The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.
PMCID: PMC3293741  PMID: 22126328
Pseudozyma; Biodegradable plastic; Phyllosphere; Yeast
8.  Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol 
The mycotoxin deoxynivalenol (DON) causes serious problems worldwide in the production of crops such as wheat and barley because of its toxicity toward humans and livestock. A bacterial culture capable of degrading DON was obtained from soil samples collected in wheat fields using an enrichment culture procedure. The isolated bacterium, designated strain WSN05-2, completely removed 1,000 μg/mL of DON from the culture medium after incubation for 10 days. On the basis of phylogenetic studies, WSN05-2 was classified as a bacterium belonging to the genus Nocardioides. WSN05-2 showed significant growth in culture medium with DON as the sole carbon source. High-performance liquid chromatography analysis indicated the presence of a major initial metabolite of DON in the culture supernatant. The metabolite was identified as 3-epi-deoxynivalenol (3-epi-DON) by mass spectrometry and 1H and 13C nuclear magnetic resonance analysis. The amount of DON on wheat grain was reduced by about 90% at 7 days after inoculation with WSN05-2. This is the first report of a Nocardioides sp. strain able to degrade DON and of the yet unknown 3-epi-DON as an intermediate in the degradation of DON by a microorganism.
PMCID: PMC3291841  PMID: 20857291
Fusarium graminearum; Trichothecenes; Deoxynivalenol; Mycotoxin degradation; Nocardioides

Results 1-8 (8)