PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (28)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions 
Annals of Botany  2013;112(1):103-114.
Background and Aims
Root hydrotropism is a response to water-potential gradients that makes roots bend towards areas of higher water potential. The gene MIZU-KUSSEI1 (MIZ1) that is essential for hydrotropism in Arabidopsis roots has previously been identified. However, the role of root hydrotropism in plant growth and survival under natural conditions has not yet been proven. This study assessed how hydrotropic response contributes to drought avoidance in nature.
Methods
An experimental system was established for the study of Arabidopsis hydrotropism in soil. Characteristics of hydrotropism were analysed by comparing the responses of the miz1 mutant, transgenic plants overexpressing MIZ1 (MIZ1OE) and wild-type plants.
Key Results
Wild-type plants developed root systems in regions with higher water potential, whereas the roots of miz1 mutant plants did not show a similar response. This pattern of root distribution induced by hydrotropism was more pronounced in MIZ1OE plants than in wild-type plants. In addition, shoot biomass and the number of plants that survived under drought conditions were much greater in MIZ1OE plants.
Conclusions
These results show that hydrotropism plays an important role in root system development in soil and contributes to drought avoidance, which results in a greater yield and plant survival under water-limited conditions. The results also show that MIZ1 overexpression can be used for improving plant productivity in arid areas.
doi:10.1093/aob/mct098
PMCID: PMC3690989  PMID: 23658369
Arabidopsis thaliana; drought avoidance; hydrotropism; root system; MIZU-KUSSEI1 (MIZ1)
2.  The image-scratch paradigm: a new paradigm for evaluating infants' motivated gaze control 
Scientific Reports  2014;4:5498.
Human infants show spontaneous behaviours such as general movement, goal-directed behaviour, and self-motivated behaviour from a very early age. However, it is unclear how these behaviours are organised throughout development. A major hindrance to empirical investigation is that there is no common paradigm for all ages that can circumvent infants' underdeveloped verbal and motor abilities. Here, we propose a new paradigm, named the image-scratch task, using a gaze-contingent technique that is adaptable to various extents of motor ability. In this task, participants scratch off a black layer on a display to uncover pictures beneath it by using their gaze. We established quantitative criteria for spontaneous eye-movement based on adults' gaze-data and demonstrated that our task is useful for evaluating eye-movements motivated by outcome attractiveness in 8-month-olds. Finally, we discuss the potential of this paradigm for revealing the mechanisms and developmental transitions underlying infants' spontaneous and intentional behaviours.
doi:10.1038/srep05498
PMCID: PMC4074783  PMID: 24975349
3.  Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep 
PLoS ONE  2014;9(2):e88058.
In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species.
doi:10.1371/journal.pone.0088058
PMCID: PMC3913723  PMID: 24505376
4.  Analysis of rice ER-resident J-proteins reveals diversity and functional differentiation of the ER-resident Hsp70 system in plants 
Journal of Experimental Botany  2013;64(18):5429-5441.
The heat shock protein 70 (Hsp70) chaperone system participates in protein folding and quality control of unfolded proteins. To examine the roles of co-chaperones in the rice Hsp70 chaperone system in the endoplasmic reticulum (ER), the functions of six ER-resident J-proteins (OsP58A, OsP58B, OsERdj2, OsERdj3A, OsERdj3B, and OsERdj7) in rice were investigated. The expression of OsP58B, OsERdj3A, and OsERdj3B was predominantly up-regulated in roots subjected to ER stress. This response was mediated by signalling through ATF6 orthologues such as OsbZIP39 and OsbZIP60, but not through the IRE1/OsbZIP50 pathway. A co-immunoprecipitation assay demonstrated that OsP58A, OsP58B, and OsERdj3B preferentially interact with the major OsBiP, OsBiP1, while OsERdj3A interacts preferentially with OsBiP5, suggesting that there are different affinities between OsBiPs and J-proteins. In the endosperm tissue, OsP58A, OsP58B, and OsERdj2 were mainly localized in the ER, whereas OsERdj2 was localized around the outer surfaces of ER-derived protein bodies (PB-Is). Furthermore, OsERdj3A was not expressed in wild-type seeds but was up-regulated in transgenic seeds accumulating human interleukin-7 (hIL-7). Since ERdj3A–green fluorescent protein (GFP) was also detected in vacuoles of callus cells under ER stress conditions, OsERdj3A is a bona fide vacuole-localized protein. OsP58A, OsP58B and OsERdj3A were differentially accumulated in transgenic plants expressing various recombinant proteins. These results reveal the functional diversity of the rice ER-resident Hsp70 system.
doi:10.1093/jxb/ert312
PMCID: PMC3871807  PMID: 24153418
BiP; endoplasmic reticulum; ER stress; Hsp70; J-protein; rice.
5.  Genetic engineering of yellow betalain pigments beyond the species barrier 
Scientific Reports  2013;3:1970.
Betalains are one of the major plant pigment groups found in some higher plants and higher fungi. They are not produced naturally in any plant species outside of the order Caryophyllales, nor are they produced by anthocyanin-accumulating Caryophyllales. Here, we attempted to reconstruct the betalain biosynthetic pathway as a self-contained system in an anthocyanin-producing plant species. The combined expressions of a tyrosinase gene from shiitake mushroom and a DOPA 4,5-dioxygenase gene from the four-o'clock plant resulted in successful betalain production in cultured cells of tobacco BY2 and Arabidopsis T87. Transgenic tobacco BY2 cells were bright yellow because of the accumulation of betaxanthins. LC-TOF-MS analyses showed that proline-betaxanthin (Pro-Bx) accumulated as the major betaxanthin in these transgenic BY2 cells. Transgenic Arabidopsis T87 cells also produced betaxanthins, but produced lower levels than transgenic BY2 cells. These results illustrate the success of a novel genetic engineering strategy for betalain biosynthesis.
doi:10.1038/srep01970
PMCID: PMC3679504  PMID: 23760173
6.  Meningococcal PilV Potentiates Neisseria meningitidis Type IV Pilus-Mediated Internalization into Human Endothelial and Epithelial Cells 
Infection and Immunity  2012;80(12):4154-4166.
The type IV pilus of Neisseria meningitidis is the major factor for meningococcal adhesion to host cells. In this study, we showed that a mutant of N. meningitidis pilV, a minor pilin protein, internalized less efficiently to human endothelial and epithelial cells than the wild-type strain. Matrix-assisted laser desorption ionization–time of flight mass spectrometry and electrospray ionization tandem mass spectrometry analyses showed that PilE, the major subunit of pili, was less glycosylated at its serine 62 residue (Ser62) in the ΔpilV mutant than in the pilV+ strain, whereas phosphoglycerol at PilE Ser93 and phosphocholine at PilE Ser67 were not changed. Introduction of the pglL mutation, which results in complete loss of O-linked glycosylation from Ser62, slightly reduced N. meningitidis internalization into human brain microvascular endothelial cells, whereas the addition of the ΔpilV mutation greatly reduced N. meningitidis internalization. The accumulation of ezrin, which is part of the cytoskeleton ERM family, was observed with pilV+, ΔpglL, and pilE(S62A) strains but not with the ΔpilV mutant. These results suggested that whereas N. meningitidis pilin originally had an adhesive activity that was less affected by minor pilin proteins, the invasive function evolved with incorporation of the PilV protein into the pili to promote the N. meningitidis internalization into human cells.
doi:10.1128/IAI.00423-12
PMCID: PMC3497409  PMID: 22988016
7.  Reliability and Validity of Quantifying Absolute Muscle Hardness Using Ultrasound Elastography 
PLoS ONE  2012;7(9):e45764.
Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young’s moduli of seven tissue-mimicking materials (in vitro; Young’s modulus range, 20–80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young’s modulus ratio of two reference materials, one hard and one soft (Young’s moduli of 7 and 30 kPa, respectively), the Young’s moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young’s moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young’s moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.
doi:10.1371/journal.pone.0045764
PMCID: PMC3448710  PMID: 23029231
8.  Factors responsible for deep-sowing tolerance in wheat seedlings: varietal differences in cell proliferation and the co-ordinated synchronization of epidermal cell expansion and cortical cell division for the gibberellin-mediated elongation of first internodes 
Annals of Botany  2011;108(3):439-447.
Background and Aims
A wheat cultivar, Triticum aestivum ‘Hong Mang Mai’, shows tolerance to deep-sowing conditions by extreme elongation of the first internode, likely mediated by the gibberellin (GA) response. To understand factors involved in the response of this deep-sowing-tolerant cultivar, cell expansion and division that confer elongation on the first internodes of wheat seedlings were investigated.
Methods
The lengths and numbers of epidermal and cortical cells of the first internodes in three wheat cultivars were measured. These parameters were compared in wheat seedlings treated with gibberellin A3 (GA3) or an inhibitor of GA biosynthesis, uniconazole.
Key Results
The varietal differences in the elongation of the first internodes were due to differences in cell numbers resulting from the different abilities of cell division, but not cell expansion. In seedlings treated with GA3, the first internode of ‘Hong Mang Mai’ was 2-fold longer than the control. The GA-stimulated elongation of the first internodes was attributed to 2-fold increases in the number of cortical cells and length of epidermal cells. The different GA-responses observed in these two tissues were also detected in other cultivars, although the response was much lower than that noted in ‘Hong Mang Mai’. The seedlings treated with uniconazole exhibited reduced numbers of cortical cells and reduced lengths of epidermal cells, with both of these effects being more pronounced in ‘Hong Mang Mai’.
Conclusions
The deep-sowing-tolerant cultivar ‘Hong Mang Mai’ is able to elongate the first internode to a greater degree due to enhanced cell division and a heightened response to GA. In addition, cell expansion in the epidermis and cell division in the cortex are synchronized for the elongation of the first internodes. In response to GA, this well-co-ordinated synchronization yields the rapid elongation of the first internodes in wheat seedlings.
doi:10.1093/aob/mcr173
PMCID: PMC3158689  PMID: 21791455
Cell expansion; cell division; deep-sowing tolerance; first internode elongation; gibberellin (GA); ‘Hong Mang Mai’; Triticum aestivum; wheat
9.  Role of Vacuolar H+-inorganic Pyrophosphatase in Tomato Fruit Development 
Journal of Experimental Botany  2012;63(15):5613-5621.
cDNA corresponding to two type-I vacuolar H+-inorganic pyrophosphatases (V-PPases) (SlVP1, SlVP2) and one type-II V-PPase (SlVP3) was isolated from tomato fruit to investigate their role in fruit development. Southern analysis revealed that type-I V-PPase genes form a multigene family, whereas there is only one type-II V-PPase gene in the tomato genome. Although SlVP1 and SlVP2 were differentially expressed in leaves and mature fruit, the highest levels of both SlVP1 and SlVP2 mRNA were observed in fruit at 2–4 days after anthesis. The expression pattern of type-II SlVP3 was similar to that of SlVP2, and the highest levels of SlVP3 mRNA were also observed in fruit at 2–4 days after anthesis, thus suggesting that SlVP3 plays a role in early fruit development. Because SlVP1 and SlVP2 mRNA was more abundant than SlVP3 mRNA, expression of type-I V-PPases was analysed further. Type-I V-PPase mRNA was localized in ovules and their vicinities and in vascular tissue at an early stage of fruit development. Tomato RNAi lines in which the expression of type-I V-PPase genes was repressed using the fruit-specific promoter TPRP-F1 exhibited fruit growth retardation at an early stage of development. Although the major function of V-PPases in fruit has been believed to be the accumulation of materials such as sugars and organic acids in the vacuole during cell expansion and ripening, these results show that specific localization of V-PPase mRNA induced by pollination has a novel role in the cell division stage.
doi:10.1093/jxb/ers213
PMCID: PMC3444275  PMID: 22915738
Fruit development; tomato; vacuolar H+-inorganic pyrophosphatase; V-PPase
10.  Characterization of β-N-acetylhexosaminidase (LeHex20A), a member of glycoside hydrolase family 20, from Lentinula edodes (shiitake mushroom) 
AMB Express  2012;2:29.
We purified and cloned a β-N-acetylhexosaminidase, LeHex20A, with a molecular mass of 79 kDa from the fruiting body of Lentinula edodes (shiitake mushroom). The gene lehex20a gene had 1,659 nucleotides, encoding 553 amino acid residues. Sequence analysis indicated that LeHex20A belongs to glycoside hydrolase (GH) family 20, and homologues of lehex20a are broadly represented in the genomes of basidiomycetes. Purified LeHex20A hydrolyzed the terminal monosaccharide residues of β-N-acetylgalactosaminides and β-N-acetylglucosaminides, indicating that LeHex20A is a β-N-acetylhexosaminidase classified into EC 3.2.1.52. The maximum LeHex20A activity was observed at pH 4.0 and 50°C. The kinetic constants were estimated using chitooligosaccharides with degree of polymerization 2-6. GH20 β-N-acetylhexosaminidases generally prefer chitobiose among natural substrates. However, LeHex20A had the highest catalytic efficiency (kcat/Km) for chitotetraose, and the Km values for GlcNAc6 were 3.9-fold lower than for chitobiose. Furthermore, the enzyme partially hydrolyzed amorphous chitin polymers. These results indicate that LeHex20A can produce N-acetylglucosamine from long-chain chitomaterials.
doi:10.1186/2191-0855-2-29
PMCID: PMC3430601  PMID: 22656067
β-N-acetylglucosaminide; Chitin; Fungal cell wall; Glycoside hydrolase family 20; Basidiomycete
11.  Meningococcal Internalization into Human Endothelial and Epithelial Cells Is Triggered by the Influx of Extracellular l-Glutamate via GltT l-Glutamate ABC Transporter in Neisseria meningitidis ▿ †  
Infection and Immunity  2010;79(1):380-392.
Meningococcal internalization into human cells is likely to be a consequence of meningococcal adhesion to human epithelial and endothelial cells. Here, we identified three transposon mutants of Neisseria meningitidis that were primarily defective in the internalization of human brain microvascular endothelial cells (HBMEC), with insertions occurring in the gltT (a sodium-independent l-glutamate transporter) gene or its neighboring gene, NMB1964 (unknown function). NMB1964 was tentatively named gltM in this study because of the presence of a mammalian cell entry (MCE)-related domain in the deduced amino acid sequences. The null ΔgltT-ΔgltM N. meningitidis mutant was also defective in the internalization into human umbilical vein endothelial cells and the human lung carcinoma epithelial cell line A549, and the defect was suppressed by transcomplementation of the mutants with gltT+-gltM+ genes. The intracellular survival of the ΔgltT-ΔgltM mutant in HBMEC was not largely different from that of the wild-type strain under our experimental conditions. Introduction of a1-bp deletion and amber or ochre mutations in gltT-gltM genes resulted in the loss of efficient internalization into HBMEC. The defect in meningococcal internalization into HBMEC and l-glutamate uptake in the ΔgltT-ΔgltM mutant were suppressed only in strains expressing both GltT and GltM proteins. The efficiency of meningococcal invasion to HBMEC decreased under l-glutamate-depleted conditions. Furthermore, ezrin, a key membrane-cytoskeleton linker, accumulated beneath colonies of the gltT+-gltM+ N. meningitidis strain but not of the ΔgltT-ΔgltM mutant. These findings suggest that l-glutamate influx via the GltT-GltM l-glutamate ABC transporter serves as a cue for N. meningitidis internalization into host cells.
doi:10.1128/IAI.00497-10
PMCID: PMC3019876  PMID: 20956569
12.  Characterization of a Cellobiohydrolase (MoCel6A) Produced by Magnaporthe oryzae▿ †  
Applied and Environmental Microbiology  2010;76(19):6583-6590.
Three GH-6 family cellobiohydrolases are expected in the genome of Magnaporthe grisea based on the complete genome sequence. Here, we demonstrate the properties, kinetics, and substrate specificities of a Magnaporthe oryzae GH-6 family cellobiohydrolase (MoCel6A). In addition, the effect of cellobiose on MoCel6A activity was also investigated. MoCel6A contiguously fused to a histidine tag was overexpressed in M. oryzae and purified by affinity chromatography. MoCel6A showed higher hydrolytic activities on phosphoric acid-swollen cellulose (PSC), β-glucan, and cellooligosaccharide derivatives than on cellulose, of which the best substrates were cellooligosaccharides. A tandemly aligned cellulose binding domain (CBD) at the N terminus caused increased activity on cellulose and PSC, whereas deletion of the CBD (catalytic domain only) showed decreased activity on cellulose. MoCel6A hydrolysis of cellooligosaccharides and sulforhodamine-conjugated cellooligosaccharides was not inhibited by exogenously adding cellobiose up to 438 mM, which, rather, enhanced activity, whereas a GH-7 family cellobiohydrolase from M. oryzae (MoCel7A) was severely inhibited by more than 29 mM cellobiose. Furthermore, we assessed the effects of cellobiose on hydrolytic activities using MoCel6A and Trichoderma reesei cellobiohydrolase (TrCel6A), which were prepared in Aspergillus oryzae. MoCel6A showed increased hydrolysis of cellopentaose used as a substrate in the presence of 292 mM cellobiose at pH 4.5 and pH 6.0, and enhanced activity disappeared at pH 9.0. In contrast, TrCel6A exhibited slightly increased hydrolysis at pH 4.5, and hydrolysis was severely inhibited at pH 9.0. These results suggest that enhancement or inhibition of hydrolytic activities by cellobiose is dependent on the reaction mixture pH.
doi:10.1128/AEM.00618-10
PMCID: PMC2950481  PMID: 20709852
13.  Hepatitis E Virus (HEV) Strains in Serum Samples Can Replicate Efficiently in Cultured Cells Despite the Coexistence of HEV Antibodies: Characterization of HEV Virions in Blood Circulation▿  
Journal of Clinical Microbiology  2010;48(4):1112-1125.
We recently developed a cell culture system for hepatitis E virus (HEV) in PLC/PRF/5 and A549 cells, using fecal specimens from HEV-infected patients. Since transfusion-associated hepatitis E has been reported, we examined PLC/PRF/5 and A549 cells for the ability to support replication of HEV in various serum samples obtained from 23 patients with genotype 1, 3, or 4 HEV. HEV progenies emerged in culture media of PLC/PRF/5 cells, regardless of the coexistence of HEV antibodies in serum but dependent on the load of HEV inoculated (31% at 2.0 × 104 copies per well and 100% at ≥3.5 × 104 copies per well), and were successfully passaged in A549 cells. HEV particles in serum, with or without HEV antibodies, banded at a sucrose density of 1.15 to 1.16 g/ml, which was markedly lower than that for HEV particles in feces, at 1.27 to 1.28 g/ml, and were nonneutralizable by immune sera in this cell culture system. An immuno-capture PCR assay of HEV virions treated with or without detergent indicated that HEV particles in serum are associated with lipids and HEV ORF3 protein, similar to those in culture supernatant. By immunoprecipitation, it was found that >90% of HEV particles in the circulation exist as free virions not complexed with immunoglobulins, despite the coexistence of HEV antibodies. These results suggest that our in vitro cell culture system can be used for propagation of a wide variety of HEV strains in sera from various infected patients, allowing extended studies on viral replication specific to different HEV strains.
doi:10.1128/JCM.02002-09
PMCID: PMC2849599  PMID: 20107086
14.  Immunomodulatory Effects of Yersinia pestis Lipopolysaccharides on Human Macrophages ▿  
In the current study, we investigated the activity of lipopolysaccharide (LPS) purified from Yersinia pestis grown at either 27°C or 37°C (termed LPS-27 and LPS-37, respectively). LPS-27 containing hexa-acylated lipid A, similar to the LPS present in usual gram-negative bacteria, stimulated an inflammatory response in human U937 cells through Toll-like receptor 4 (TLR4). LPS-37, which did not contain hexa-acylated lipid A, exhibited strong antagonistic activity to the TLR4-mediated inflammatory response. The phagocytic activity in the cells was not affected by LPS-37. To estimate the activity of LPS in its bacterial binding form, formalin-killed bacteria (FKB) were prepared from Y. pestis cells grown at 27°C or 37°C (termed FKB-27 and FKB-37, respectively). FKB-27 strongly stimulated the inflammatory response. This activity was suppressed in the presence of an anti-TLR4 antibody but not an anti-TLR2 antibody. In addition, this activity was almost completely suppressed by LPS-37, indicating that the activity of FKB-27 is predominantly derived from the LPS-27 bacterial binding form. In contrast, FKB-37 showed no antagonistic activity. The results arising from the current study indicate that Y. pestis causes infection in humans without stimulating the TLR4-based defense system via bacterial binding of LPS-37, even when bacterial free LPS-37 is not released to suppress the defense system. This is in contrast to the findings for bacteria that possess agonistic LPS types, which are easily recognized by the defense system via the bacterial binding forms.
doi:10.1128/CVI.00336-09
PMCID: PMC2812085  PMID: 19889939
15.  The role of NAD biosynthesis in plant development and stress responses 
Annals of Botany  2009;103(6):819-824.
Background
Pyridine nucleotides are essential for electron transport and serve as co-factors in multiple metabolic processes in all organisms. Each nucleotide has a particular role in metabolism. For instance, the NAD/NADP ratio is believed to be responsible for sustaining the functional status of plant cells. However, since enzymes involved in the synthesis and degradation of NAD and NADP have not been fully identified, the physiological functions of these co-enzymes in plant growth and development are largely unknown.
Scope
This Botanical Briefing covers progress in the developmental and stress-related roles of genes associated with NAD biosynthesis in plants. Special attention will be given to assessments of physiological impacts through the modulation of NAD and NADP biosynthesis.
Conclusions
The significance of NAD biosynthesis in plant development and NADP biosynthesis in plant stress tolerance is summarized in this Briefing. Further investigation of cells expressing a set of NAD biosynthetic genes would facilitate understanding of regulatory mechanisms by which plant cells maintain NAD homeostasis.
doi:10.1093/aob/mcp019
PMCID: PMC2707885  PMID: 19201765
NAD biosynthesis; nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT); chloroplastic NADP biosynthesis; NAD kinase 2 (NADK2)
16.  Development and Characterization of a Genotype 4 Hepatitis E Virus Cell Culture System Using a HE-JF5/15F Strain Recovered from a Fulminant Hepatitis Patient ▿  
Journal of Clinical Microbiology  2009;47(6):1906-1910.
We developed an efficient cell culture system for genotype 4 hepatitis E virus using the HE-JF5/15F strain recovered from a fulminant hepatitis patient. The sixth-passage virus in the culture supernatant reached 1.5 × 108 copies/ml at 10 days postinoculation and possessed 10 nucleotide mutations with four amino acid changes.
doi:10.1128/JCM.00629-09
PMCID: PMC2691090  PMID: 19369433
17.  Modification of Lipooligosaccharide with Phosphoethanolamine by LptA in Neisseria meningitidis Enhances Meningococcal Adhesion to Human Endothelial and Epithelial Cells▿  
Infection and Immunity  2008;76(12):5777-5789.
The lipooligosaccharide (LOS) of Neisseria meningitidis can be decorated with phosphoethanolamine (PEA) at the 4′ position of lipid A and at the O-3 and O-6 positions of the inner core of the heptose II residue. The biological role of PEA modification in N. meningitidis remains unclear. During the course of our studies to elucidate the pathogenicity of the ST-2032 (invasive) meningococcal clonal group, disruption of lptA, the gene that encodes the PEA transferase for 4′ lipid A, led to a approximately 10-fold decrease in N. meningitidis adhesion to four kinds of human endothelial and epithelial cell lines at an multiplicity of infection of 5,000. Complementation of the lptA gene in a ΔlptA mutant restored wild-type adherence. By matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis, PEA was lost from the lipid A of the ΔlptA mutant compared to that of the wild-type strain. The effect of LptA on meningococcal adhesion was independent of other adhesins such as pili, Opc, Opa, and PilC but was inhibited by the presence of capsule. These results indicate that modification of LOS with PEA by LptA enhances meningococcal adhesion to human endothelial and epithelial cells in unencapsulated N. meningitidis.
doi:10.1128/IAI.00676-08
PMCID: PMC2583577  PMID: 18824535
18.  The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells 
Plant Signaling & Behavior  2008;3(11):945-953.
An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycle. Lower ATP concentration caused aberrant energy charge, concurrently with reduced amount of NAD(P)H in elicitor treated cells. Among free amino acids detected in this study, the level of gamma-aminobutyric acid (GABA) increased. GABA is metabolized through a bypass pathway of the TCA cycle called GABA shunt, which is composed of glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). While M. grisea elicitor negligibly affected GAD and SSADH, GABA-T activity significantly decreased. The decrease in GABA-T activity was recovered by NADPH oxidase inhibitor, which prevents cell death induced by M. grisea elicitor. Thus, GABA accumulation observed in rice cells under elicitor stress is partly associated with GABA-T activity.
PMCID: PMC2633740  PMID: 19513197
metabolome; Magnaporthe grisea; capillary electrophoresis; mass spectrometry; gamma-aminobutyric acid; GABA transaminase; Oryza sativa
19.  A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice 
Journal of Experimental Botany  2009;60(2):615-627.
Prolamins, a group of rice (Oryza sativa) seed storage proteins, are synthesized on the rough endoplasmic reticulum (ER) and deposited in ER-derived type I protein bodies (PB-Is) in rice endosperm cells. The accumulation mechanism of prolamins, which do not possess the well-known ER retention signal, remains unclear. In order to elucidate whether the accumulation of prolamin in the ER requires seed-specific factors, the subcellular localization of the constitutively expressed green fluorescent protein fused to prolamin (prolamin–GFP) was examined in seeds, leaves, and roots of transgenic rice plants. The prolamin–GFP fusion proteins accumulated not only in the seeds but also in the leaves and roots. Microscopic observation of GFP fluorescence and immunocytochemical analysis revealed that prolamin–GFP fusion proteins specifically accumulated in PB-Is in the endosperm, whereas they were deposited in the electron-dense structures in the leaves and roots. The ER chaperone BiP was detected in the structures in the leaves and roots. The results show that the aggregation of prolamin–GFP fusion proteins does not depend on the tissues, suggesting that the prolamin–GFP fusion proteins accumulate in the ER by forming into aggregates. The findings bear out the importance of the assembly of prolamin molecules and the interaction of prolamin with BiP in the formation of ER-derived PBs.
doi:10.1093/jxb/ern311
PMCID: PMC2651459  PMID: 19129168
Endoplasmic reticulum; Oryza sativa; prolamin; protein body; storage protein; transgenic rice
20.  Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry 
Journal of Experimental Botany  2008;59(11):3009-3018.
Capillary electrophoresis mass spectrometry (CE/MS) was applied for the comprehensive survey of changes in the amounts of metabolites upon the shift from photoautotrophic to photomixotrophic conditions in Synechocystis sp. PCC 6803. When glucose was added to the photoautotrophically grown culture, the increase in the metabolites for the oxidative pentose phosphate (OPP) pathway and glycolysis, together with the decrease in those for the Calvin cycle, was observed. Concomitantly, the increase in respiratory activity and the decrease in photosynthetic activity took place in the wild-type cells. In the pmgA-disrupted mutant that shows growth inhibition under photomixotrophic conditions, lower enzymatic activities of the OPP pathway and higher photosynthetic activity were observed, irrespective of trophic conditions. These defects brought about metabolic disorders such as a decrease in ATP and NADPH contents, a failure in the activation of respiratory activity, and the aberrant accumulation of isocitrate under photomixotrophic but not under photoautotrophic conditions. A delicate balancing of the carbon flow between the Calvin cycle and the OPP pathway seems indispensable for growth specifically under photomixotrophic conditions and PmgA is likely to be involved in the regulation.
doi:10.1093/jxb/ern157
PMCID: PMC2504344  PMID: 18611912
CE/MS; cyanobacteria; glucose; metabolome; photomixotrophy; pmgA
21.  How do Arabidopsis Roots Differentiate Hydrotropism from Gravitropism? 
Plant Signaling & Behavior  2007;2(5):388-389.
Root hydrotropism is a response to moisture gradients, which is considered to be important for drought avoidance. Recent reevaluation of root hydrotropism has emphasised the dominating effect of root gravitropism on it. It has been suggested that amyloplast dynamics inside columella cells and auxin regulation play roles in this interacting mechanism, even though the existence of distinct pathways of two tropisms derived from different stimuli remained unclear. We have recently found two factors that separate the mechanism of hydrotropism from that of gravitropism in Arabidopsis seedling roots. One is the difference in the mode of auxin-mediated growth regulation between two tropisms, and the other is the identification of gene indispensable only for root hydrotropism. Here we summarize the recent progress on root hydrotropism research and discuss the remaining and emerging issues.
PMCID: PMC2634222  PMID: 19704609
auxin; gravitropism; hydrotropism; root; MIZU-KUSSEI1 (MIZ1)
22.  Evaluation of Metabolic Alteration in Transgenic Rice Overexpressing Dihydroflavonol-4-reductase 
Annals of Botany  2006;98(4):819-825.
• Background and Aims Previous studies have shown that transgenic rice plants overexpressing YK1, which possesses dihydroflavonol-4-reductase (DFR) activity, showed biotic and abiotic stress tolerance. High throughput profiles of metabolites have also been shown in such transgenic plants by Fourier transform ion cyclotron mass spectrometry. In this study, capillary electrophoresis mass spectrometry analysis (CE/MS) was employed to identify precise metabolites such as organic acids, amino acids and sugars.
• Methods Using CE/MS, we analysed several metabolites of glycolysis, the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway. In addition, the concentrations of sugars and ion were quantified.
• Key Results In YK1 (DFR)-overexpressing plants, the concentrations of cis-aconitate, isocitrate and 2-oxoglutarate were higher in leaves, whereas those of fructose-1,6-bisphosphate and glyceraldehyde-3-phosphate were lower in roots. In seeds, the amounts of free amino acids and metals were altered, whereas sugars in seeds were kept constant. In YK1 calli, an approx. 3-fold increase in glutathione was observed, whereas the activities of glutathione peroxidase and glutathione reductase were concomitantly increased.
• Conclusions The overexpression of YK1 (DFR) was associated with slight changes in the amounts of several metabolites analysed in whole plants, whilst glutathione derivatives were substantially increased in suspension-cultured cells.
doi:10.1093/aob/mcl162
PMCID: PMC2806160  PMID: 16849376
Metabolome; dihydroflavonol-4-reductase; capillary electrophoresis; mass spectrometry; rice; Oryza sativa
23.  A gonococcal homologue of meningococcal γ-glutamyl transpeptidase gene is a new type of bacterial pseudogene that is transcriptionally active but phenotypically silent 
BMC Microbiology  2005;5:56.
Background
It has been speculated that the γ-glutamyl transpeptidase (ggt) gene is present only in Neisseria meningitidis and not among related species such as Neisseria gonorrhoeae and Neisseria lactamica, because N. meningitidis is the only bacterium with GGT activity. However, nucleotide sequences highly homologous to the meningococcal ggt gene were found in the genomes of N. gonorrhoeae isolates.
Results
The gonococcal homologue (ggt gonococcal homologue; ggh) was analyzed. The nucleotide sequence of the ggh gene was approximately 95 % identical to that of the meningococcal ggt gene. An open reading frame in the ggh gene was disrupted by an ochre mutation and frameshift mutations induced by a 7-base deletion, but the amino acid sequences deduced from the artificially corrected ggh nucleotide sequences were approximately 97 % identical to that of the meningococcal ggt gene. The analyses of the sequences flanking the ggt and ggh genes revealed that both genes were localized in a common DNA region containing the fbp-ggt (or ggh)-glyA-opcA-dedA-abcZ gene cluster. The expression of the ggh RNA could be detected by dot blot, RT-PCR and primer extension analyses. Moreover, the truncated form of ggh-translational product was also found in some of the gonococcal isolates.
Conclusion
This study has shown that the gonococcal ggh gene is a pseudogene of the meningococcal ggt gene, which can also be designated as Ψggt. The gonococcal ggh (Ψggt) gene is the first identified bacterial pseudogene that is transcriptionally active but phenotypically silent.
doi:10.1186/1471-2180-5-56
PMCID: PMC1262726  PMID: 16202144
24.  Effect of intramammary injection of rboGM-CSF on milk levels of chemiluminescence activity, somatic cell count, and Staphylococcus aureus count in Holstein cows with S. aureus subclinical mastitis 
Abstract
The effect of intramammary injection of recombinant bovine granulocyte-macrophage colony-stimulating factor (rboGM-CSF, 400 μg/10 mL) on quarter milk levels of chemiluminescence (CL) activity, and somatic cell count (SCC) and shedding pattern of Staphylococcus aureus was investigated. Ten Holstein cows, naturally infected with S. aureus were used, with either early-stage or late-stage subclinical mastitis. Injection of rboGM-CSF caused a remarkable increase in milk CL activity with a peak at 6 h after the cytokine injection in the early- and late-stage groups. In the early-stage group, milk SCC stayed around preinjection level at 6 h, rose significantly on days 1 and 2, and was followed by a smooth and significant decline to an under preinjection level (below 200 000 cells/mL) on day 7 postinjection. Alternatively, in the late-stage group, milk SCC rose significantly at 6 h after the cytokine injection and maintained high levels thereafter. The milk S. aureus count decreased drastically by the cytokine injection in the early-stage group. The bacterial count was moderately decreased in the late-stage group, but increased back to preinoculation levels on day 7 after the cytokine injection. The results suggest that the rboGM-CSF has a potential as a therapeutic agent for S. aureus infection causing subclinical mastitis of dairy cows, if the cytokine is applied at the initial stage of infection.
PMCID: PMC1142137  PMID: 15352542
25.  Necessity of Meningococcal γ-Glutamyl Aminopeptidase for Neisseria meningitidis Growth in Rat Cerebrospinal Fluid (CSF) and CSF-Like Medium 
Journal of Bacteriology  2004;186(1):244-247.
The growth of a γ-glutamyl aminopeptidase (GGT)-deficient Neisseria meningitidis strain was much slower than that of the parent strain in rat cerebrospinal fluid (CSF) and in a synthetic CSF-mimicking medium, and the growth failure was suppressed by the addition of cysteine. These results suggested that, in the environment of cysteine shortage, meningococcal GGT provided an advantage for meningococcal multiplication by supplying cysteine from environmental γ-glutamyl-cysteinyl peptides.
doi:10.1128/JB.186.1.244-247.2004
PMCID: PMC303462  PMID: 14679245

Results 1-25 (28)