Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Genes Involved in Degradation of para-Nitrophenol Are Differentially Arranged in Form of Non-Contiguous Gene Clusters in Burkholderia sp. strain SJ98 
PLoS ONE  2013;8(12):e84766.
Biodegradation of para-Nitrophenol (PNP) proceeds via two distinct pathways, having 1,2,3-benzenetriol (BT) and hydroquinone (HQ) as their respective terminal aromatic intermediates. Genes involved in these pathways have already been studied in different PNP degrading bacteria. Burkholderia sp. strain SJ98 degrades PNP via both the pathways. Earlier, we have sequenced and analyzed a ~41 kb fragment from the genomic library of strain SJ98. This DNA fragment was found to harbor all the lower pathway genes; however, genes responsible for the initial transformation of PNP could not be identified within this fragment. Now, we have sequenced and annotated the whole genome of strain SJ98 and found two ORFs (viz., pnpA and pnpB) showing maximum identity at amino acid level with p-nitrophenol 4-monooxygenase (PnpM) and p-benzoquinone reductase (BqR). Unlike the other PNP gene clusters reported earlier in different bacteria, these two ORFs in SJ98 genome are physically separated from the other genes of PNP degradation pathway. In order to ascertain the identity of ORFs pnpA and pnpB, we have performed in-vitro assays using recombinant proteins heterologously expressed and purified to homogeneity. Purified PnpA was found to be a functional PnpM and transformed PNP into benzoquinone (BQ), while PnpB was found to be a functional BqR which catalyzed the transformation of BQ into hydroquinone (HQ). Noticeably, PnpM from strain SJ98 could also transform a number of PNP analogues. Based on the above observations, we propose that the genes for PNP degradation in strain SJ98 are arranged differentially in form of non-contiguous gene clusters. This is the first report for such arrangement for gene clusters involved in PNP degradation. Therefore, we propose that PNP degradation in strain SJ98 could be an important model system for further studies on differential evolution of PNP degradation functions.
PMCID: PMC3871574  PMID: 24376843
2.  Branching of the p-nitrophenol (PNP) degradation pathway in burkholderia sp. Strain SJ98: Evidences from genetic characterization of PNP gene cluster 
AMB Express  2012;2:30.
Aerobic microbial degradation of p-nitrophenol (PNP) has been classically shown to proceed via ‘Hydroquinone (HQ) pathway’ in Gram-negative bacteria, whereas in Gram-positive PNP degraders it proceed via ‘Benzenetriol (BT) pathway’. These pathways are characterized by the ring cleavage of HQ and BT as terminal aromatic intermediates respectively. Earlier reports on PNP degradation have indicated these pathways to be mutually exclusive. We report involvement of both ‘HQ’ and ‘BT’ ring cleavage pathways in PNP degradation by Burkholderia sp. strain SJ98. Genetic characterization of an ~41 Kb DNA fragment harboring PNP degradation gene cluster cloned and sequenced from strain SJ98 showed presence of multiple orfs including pnpC and pnpD which corresponded to previously characterized ‘benzenetriol-dioxygenase (BtD)’ and ‘maleylacetate reductase (MaR)’ respectively. This gene cluster also showed presence of pnpE1 and pnpE2, which shared strong sequence identity to cognate sub-units of ‘hydroquinone dioxygenase’ (HqD). Heterologous expression and biochemical characterization ascertained the identity of PnpE1 and PnpE2. In in vitro assay reconstituted heterotetrameric complex of PnpE1 and PnpE2 catalyzed transformation of hydroquinone (HQ) into corresponding hydroxymuconic semialdehyde (HMS) in a substrate specific manner. Together, these results clearly establish branching of PNP degradation in strain SJ98. We propose that strain SJ98 presents a useful model system for future studies on evolution of microbial degradation of PNP.
PMCID: PMC3485097  PMID: 22681853
P-nitrophenol; Hydroquinone dioxygenase; PNP pathway; Burkholderia sp SJ98
3.  Chemotaxis of Burkholderia sp. Strain SJ98 towards chloronitroaromatic compounds that it can metabolise 
BMC Microbiology  2012;12:19.
Burkholderia sp. strain SJ98 is known for its chemotaxis towards nitroaromatic compounds (NACs) that are either utilized as sole sources of carbon and energy or co-metabolized in the presence of alternative carbon sources. Here we test for the chemotaxis of this strain towards six chloro-nitroaromatic compounds (CNACs), namely 2-chloro-4-nitrophenol (2C4NP), 2-chloro-3-nitrophenol (2C3NP), 4-chloro-2-nitrophenol (4C2NP), 2-chloro-4-nitrobenzoate (2C4NB), 4-chloro-2-nitrobenzoate (4C2NB) and 5-chloro-2-nitrobenzoate (5C2NB), and examine its relationship to the degradation of such compounds.
Strain SJ98 could mineralize 2C4NP, 4C2NB and 5C2NB, and co-metabolically transform 2C3NP and 2C4NB in the presence of an alternative carbon source, but was unable to transform 4C2NP under these conditions. Positive chemotaxis was only observed towards the five metabolically transformed CNACs. Moreover, the chemotaxis was induced by growth in the presence of the metabolisable CNAC. It was also competitively inhibited by the presence of nitroaromatic compounds (NACs) that it could metabolise but not by succinate or aspartate.
Burkholderia sp. strain SJ98 exhibits metabolic transformation of, and inducible chemotaxis towards CNACs. Its chemotactic responses towards these compounds are related to its previously demonstrated chemotaxis towards NACs that it can metabolise, but it is independently inducible from its chemotaxis towards succinate or aspartate.
PMCID: PMC3293717  PMID: 22292983
4.  A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol 
BMC Biotechnology  2010;10:49.
Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective and suitable for industrial purposes.
We have optimized a process for bio-catalytic production of 3-substituted catechols viz. 3-nitrocatechol (3-NC) and 3-methylcatechol (3-MC) at pilot scale. Amongst the screened strains, two strains viz. Pseudomonas putida strain (F1) and recombinant Escherichia coli expression clone (pDTG602) harboring first two genes of toluene degradation pathway were found to accumulate 3-NC and 3-MC respectively. Various parameters such as amount of nutrients, pH, temperature, substrate concentration, aeration, inoculums size, culture volume, toxicity of substrate and product, down stream extraction, single step and two-step biotransformation were optimized at laboratory scale to obtain high yields of 3-substituted catechols. Subsequently, pilot scale studies were performed in 2.5 liter bioreactor. The rate of product accumulation at pilot scale significantly increased up to ~90-95% with time and high yields of 3-NC (10 mM) and 3-MC (12 mM) were obtained.
The biocatalytic production of 3-substituted catechols viz. 3-NC and 3-MC depend on some crucial parameters to obtain maximum yields of the product at pilot scale. The process optimized for production of 3-substituted catechols by using the organisms P. putida (F1) and recombinant E. coli expression clone (pDTG602) may be useful for industrial application.
PMCID: PMC2906425  PMID: 20587073
5.  Diversity of ‘benzenetriol dioxygenase’ involved in p-nitrophenol degradation in soil bacteria 
Indian Journal of Microbiology  2008;48(2):279-286.
Ring hydroxylating dioxygenases (RHDOs) are one of the most important classes of enzymes featuring in the microbial metabolism of several xenobiotic aromatic compounds. One such RHDO is benzenetriol dioxygenase (BtD) which constitutes the metabolic machinery of microbial degradation of several mono- phenolic and biphenolic compounds including nitrophenols. Assessment of the natural diversity of benzenetriol dioxygenase (btd) gene sequence is of great significance from basic as well as applied study point of view. In the present study we have evaluated the gene sequence variations amongst the partial btd genes that were retrieved from microorganisms enriched for PNP degradation from pesticide contaminated agriculture soils. The gene sequence analysis was also supplemented with an in silico restriction digestion analysis. Furthermore, a phylogenetic analysis based on the deduced amino acid sequence(s) was performed wherein the evolutionary relatedness of BtD enzyme with similar aromatic dioxygenases was determined. The results obtained in this study indicated that this enzyme has probably undergone evolutionary divergence which largely corroborated with the taxonomic ranks of the host microorganisms.
PMCID: PMC3450173  PMID: 23100721
Benzenetriol dioxygenase; p-Nitrophenol; Phylogenetic analysis

Results 1-5 (5)