PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica 
AMB Express  2012;2:27.
In this study, a novel rDNA based plasmid was developed for display of heterologous proteins on the cell surface of Yarrowia lipolytica using the C-terminal end of the glycosylphosphatidylinositol (GPI) anchored Y. lipolytica cell wall protein 1 (YlCWP1). mCherry was used as a model protein to assess the efficiency of the constructed plasmid. Y. lipolytica transformants harbouring the expression cassettes showed a purple colour phenotype on selective YNB-casamino plates as compared to control cells indicating that mCherry was displayed on the cells. Expression of mCherry on cells of Y. lipolytica was confirmed by both fluorescent microscopy and flow cytometry. Furthermore, SDS-PAGE analysis and matrix-assisted laser desorption/ionization (MALDI)-time-of (TOF)-mass spectrometry (MS) peptide mass fingerprinting (PMF) confirmed that the protein cleaved from the yeast cells using enterokinase was mCherry. Efficient cleavage of mCherry reported in this work offers an alternative purification method for displayed heterologous proteins on Y. lipolytica cells using the plasmid constructed in this study. The developed displaying system offers great potential for industrial production and purification of heterologous proteins at low cost.
doi:10.1186/2191-0855-2-27
PMCID: PMC3441212  PMID: 22608131
mCherry; rDNA vector; YlCWP1; Yarrowia lipolytica; Cell surface display
2.  Transfection of Diaporthe perjuncta with Diaporthe RNA Virus 
Diaporthe perjuncta is a pathogen of grapevines worldwide. A positive-strand RNA virus, Diaporthe RNA virus (DaRV), occurs in hypovirulent isolates of this fungus. A virus-free isolate from a South African grapevine was transfected with in vitro-transcribed positive strands of DaRV. Based on reverse transcription-PCR and partial sequence analysis, the transfected virus was identified as DaRV. The in vitro-transcribed RNA transcripts used to transfect fungal spheroplasts contained parts of the vector at their distal ends. These vector sequences were separated from the DaRV genome during replication in the new host. The transfected isolate had morphological features that differed from those of the isogenic virus-free strain, including production of a yellow pigment, a decreased growth rate, and lack of sporulation. An apple-based pathogenicity test did not reveal any differences in virulence between the virus-free and DaRV-transfected isolates. This study showed that virus-free fungal hosts can be successfully transfected with viruses other than the Cryphonectria parasitica hypovirus.
doi:10.1128/AEM.69.7.3952-3956.2003
PMCID: PMC165159  PMID: 12839766

Results 1-2 (2)