PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources 
AMB Express  2012;2:37.
We performed a focused proteome analysis of cellulosomal proteins predicted by a genome analysis of Clostridium cellulovorans [Tamaru, Y., et al.. 2010. J. Bacteriol. 192:901–902]. Our system employed a long monolithic column (300 cm), which provides better performance and higher resolution than conventional systems. Twenty-three cellulosomal proteins were, without purification, identified by direct analysis of the culture medium. Proteome analysis of the C. cellulovorans cellulosome after culture in various carbon sources demonstrated the production of carbon source-adapted cellulosome components.
doi:10.1186/2191-0855-2-37
PMCID: PMC3444338  PMID: 22839966
Clostridium cellulovorans; Cellulosome; Focused proteome analysis; Monolithic column
2.  Putative Role of Cellulosomal Protease Inhibitors in Clostridium cellulovorans Based on Gene Expression and Measurement of Activities▿ 
Journal of Bacteriology  2011;193(19):5527-5530.
This study is the first to demonstrate the activity of putative cellulosomal protease/peptidase inhibitors (named cyspins) of Clostridium cellulovorans, using the Saccharomyces cerevisiae display system. Cyspins exhibited inhibitory activities against several representative plant proteases. This suggests that these inhibitors protect their microbe and cellulosome from external attack by plant proteases.
doi:10.1128/JB.05022-11
PMCID: PMC3187468  PMID: 21784939
3.  Comparison of the mesophilic cellulosome‐producing Clostridium cellulovorans genome with other cellulosome‐related clostridial genomes 
Microbial biotechnology  2010;4(1):64-73.
Summary
Clostridium cellulovorans, an anaerobic and mesophilic bacterium, degrades native substrates in soft biomass such as corn fibre and rice straw efficiently by producing an extracellular enzyme complex called the cellulosome. Recently, we have reported the whole‐genome sequence of C. cellulovorans comprising 4220 predicted genes in 5.10 Mbp [Y. Tamaru et al., (2010) J. Bacteriol., 192: 901–902]. As a result, the genome size of C. cellulovorans was about 1 Mbp larger than that of other cellulosome‐producing clostridia, mesophilic C. cellulolyticum and thermophilic C. thermocellum. A total of 57 cellulosomal genes were found in the C. cellulovorans genome, and they coded for not only carbohydrate‐degrading enzymes but also a lipase, peptidases and proteinase inhibitors. Interestingly, two novel genes encoding scaffolding proteins were found in the genome. According to KEGG metabolic pathways and their comparison with 11 Clostridial genomes, gene expansion in the C. cellulovorans genome indicated mainly non‐cellulosomal genes encoding hemicellulases and pectin‐degrading enzymes. Thus, by examining genome sequences from multiple Clostridium species, comparative genomics offers new insight into genome evolution and the way natural selection moulds functional DNA sequence evolution. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced cellulosome‐producing Clostridium strains for industrial applications such as biofuel production.
doi:10.1111/j.1751-7915.2010.00210.x
PMCID: PMC3815796  PMID: 21255373
4.  Crystallization and preliminary X-ray analysis of isomaltase from Saccharomyces cerevisiae  
The crystallization and preliminary X-ray analysis of isomaltase is reported.
Isomaltase from Saccharomyces cerevisiae is an oligo-1,6-glucosidase that preferentially hydrolyzes isomaltose, with little activity towards isomaltotriose or longer oligosaccharides. An amino-acid sequence analysis of the isomaltase revealed that it belongs to glucoside hydrolase family 13. Recombinant isomaltase was purified and crystallized by the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant. The crystals belonged to space group C2, with unit-cell parameters a = 95.67, b = 115.42, c = 61.77 Å, β = 91.17°. X-ray diffraction data were collected to 1.35 Å resolution from a single crystal on a synchrotron-radiation source.
doi:10.1107/S174430910803114X
PMCID: PMC2581680  PMID: 18997332
isomaltase; oligo-1,6-glucosidases
5.  Genome Sequence of the Cellulosome-Producing Mesophilic Organism Clostridium cellulovorans 743B▿  
Journal of Bacteriology  2009;192(3):901-902.
Clostridium cellulovorans 743B was isolated from a wood chip pile and is an anaerobic and mesophilic spore-forming bacterium. This organism degrades native substrates in soft biomass such as corn fiber and rice straw efficiently by producing an extracellular enzyme complex called the cellulosome. Here we report the genome sequence of C. cellulovorans 743B.
doi:10.1128/JB.01450-09
PMCID: PMC2812471  PMID: 19948806

Results 1-5 (5)