PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411 
PLoS ONE  2015;10(8):e0136060.
Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47–0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2–2.7 g/L/h and a total sugar conversion of 90–99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.
doi:10.1371/journal.pone.0136060
PMCID: PMC4546601  PMID: 26295944
2.  Partition Enrichment of Nucleotide Sequences (PINS) - A Generally Applicable, Sequence Based Method for Enrichment of Complex DNA Samples 
PLoS ONE  2014;9(9):e106817.
The dwindling cost of DNA sequencing is driving transformative changes in various biological disciplines including medicine, thus resulting in an increased need for routine sequencing. Preparation of samples suitable for sequencing is the starting point of any practical application, but enrichment of the target sequence over background DNA is often laborious and of limited sensitivity thereby limiting the usefulness of sequencing. The present paper describes a new method, Probability directed Isolation of Nucleic acid Sequences (PINS), for enrichment of DNA, enabling the sequencing of a large DNA region surrounding a small known sequence. A 275,000 fold enrichment of a target DNA sample containing integrated human papilloma virus is demonstrated. Specifically, a sample containing 0.0028 copies of target sequence per ng of total DNA was enriched to 786 copies per ng. The starting concentration of 0.0028 target copies per ng corresponds to one copy of target in a background of 100,000 complete human genomes. The enriched sample was subsequently amplified using rapid genome walking and the resulting DNA sequence revealed not only the sequence of a the truncated virus, but also 1026 base pairs 5′ and 50 base pairs 3′ to the integration site in chromosome 8. The demonstrated enrichment method is extremely sensitive and selective and requires only minimal knowledge of the sequence to be enriched and will therefore enable sequencing where the target concentration relative to background is too low to allow the use of other sample preparation methods or where significant parts of the target sequence is unknown.
doi:10.1371/journal.pone.0106817
PMCID: PMC4159240  PMID: 25203653
3.  Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol 
AMB Express  2012;2:44.
The production of biodiesel results in a concomitant production of crude glycerol (10% w/w). Clostridium pasteurianum can utilize glycerol as sole carbon source and converts it into 1,3-propanediol, ethanol, butanol, and CO2. Reduced growth and productivities on crude glycerol as compared to technical grade glycerol have previously been observed. In this study, we applied random mutagenesis mediated by ethane methyl sulfonate (EMS) to develop a mutant strain of C. pasteurianum tolerating high concentrations of crude glycerol. At an initial crude glycerol concentration of 25 g/l the amount of dry cell mass produced by the mutant strain was six times higher than the amount produced by the wild type. Growth of the mutant strain was even detected at an initial crude glycerol concentration of 105 g/l. A pH controlled reactor with in situ removal of butanol by gas-stripping was used to evaluate the performance of the mutant strain. Utilizing stored crude glycerol, the mutant strain showed significantly increased rates compared to the wild type. A maximum glycerol utilization rate of 7.59 g/l/h was observed along with productivities of 1.80 g/l/h and 1.21 g/l/h of butanol and 1,3-PDO, respectively. These rates are higher than what previously has been published for C. pasteurianum growing on technical grade glycerol in fed batch reactors. In addition, high yields of the main products (butanol and 1,3-PDO) were detected and these two products were efficiently separated in two steams using gas-stripping.
doi:10.1186/2191-0855-2-44
PMCID: PMC3492062  PMID: 22901717
Glycerol; Crude glycerol; Biofuel; Anaerobic fermentation; Chemical mutagenesis

Results 1-3 (3)