Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("heisler, Tim")
1.  A sensitive method for rapid detection of alkyl halides and dehalogenase activity using a multistep enzyme assay 
AMB Express  2012;2:51.
A method for the detection of haloalkane conversion to the corresponding alcohols by haloalkane dehalogenases is described. It is based on a multistage enzyme reaction which allows for the analysis of alkyl halides in buffered systems. Irreversible hydrolytic dehalogenation catalyzed by haloalkane dehalogenase DhaA from Rhodococcus erythropolis transfers an alkyl halide into a corresponding alcohol that is further oxidized by alcohol oxidase AOX from Pichia pastoris yielding a respective aldehyde and hydrogen peroxide easily detectable via the horseradish peroxidase catalyzed oxidation of chromogenic molecules. Due to its high sensitivity (0.025 mM, 0.43 ppm for 1,3-dibromopropane), low expenditure and the ability of handling a large number of samples in parallel, this method is an attractive alternative to existing procedures for the monitoring of both haloalkanes and dehalogenases.
PMCID: PMC3487978  PMID: 23006907
Alcohol oxidase; Haloalkane dehalogenase; Haloalkanes; Horseradish peroxidase; Multistage enzyme reaction
2.  In Vivo Enzyme Immobilization by Inclusion Body Display▿ †  
Applied and Environmental Microbiology  2010;76(16):5563-5569.
A novel strategy for in vivo immobilization of enzymes on the surfaces of inclusion bodies has been established. It relies on expression in Escherichia coli of the polyhydroxybutyrate synthase PhaC from Cupriavidus necator, which carries at its amino terminus an engineered negatively charged α-helical coil (Ecoil) and forms inclusion bodies upon high-level expression. Coexpression in the same cell of galactose oxidase (GOase) from Fusarium spp. carrying a carboxy-terminal positively charged coil (lysine-rich coil [Kcoil]) sequence results in heterodimeric coiled-coil formation in vivo and in the capture of the enzyme in active form on the surface of the inclusion body particle. These round-shaped enzyme-decorated microparticles, with sizes of approximately 0.7 μm, can be isolated from lysed cells simply by centrifugation. The cost-effective one-step generation and isolation of enzymes immobilized on inclusion body particles may become useful for various applications in bioprocessing and biotransformation.
PMCID: PMC2918971  PMID: 20581198

Results 1-2 (2)