PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (217)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation 
Pereyra, Florencia | Jia, Xiaoming | McLaren, Paul J. | Telenti, Amalio | de Bakker, Paul I.W. | Walker, Bruce D. | Jia, Xiaoming | McLaren, Paul J. | Ripke, Stephan | Brumme, Chanson J. | Pulit, Sara L. | Telenti, Amalio | Carrington, Mary | Kadie, Carl M. | Carlson, Jonathan M. | Heckerman, David | de Bakker, Paul I.W. | Pereyra, Florencia | de Bakker, Paul I.W. | Graham, Robert R. | Plenge, Robert M. | Deeks, Steven G. | Walker, Bruce D. | Gianniny, Lauren | Crawford, Gabriel | Sullivan, Jordan | Gonzalez, Elena | Davies, Leela | Camargo, Amy | Moore, Jamie M. | Beattie, Nicole | Gupta, Supriya | Crenshaw, Andrew | Burtt, Noël P. | Guiducci, Candace | Gupta, Namrata | Carrington, Mary | Gao, Xiaojiang | Qi, Ying | Yuki, Yuko | Pereyra, Florencia | Piechocka-Trocha, Alicja | Cutrell, Emily | Rosenberg, Rachel | Moss, Kristin L. | Lemay, Paul | O’Leary, Jessica | Schaefer, Todd | Verma, Pranshu | Toth, Ildiko | Block, Brian | Baker, Brett | Rothchild, Alissa | Lian, Jeffrey | Proudfoot, Jacqueline | Alvino, Donna Marie L. | Vine, Seanna | Addo, Marylyn M. | Allen, Todd M. | Altfeld, Marcus | Henn, Matthew R. | Le Gall, Sylvie | Streeck, Hendrik | Walker, Bruce D. | Haas, David W. | Kuritzkes, Daniel R. | Robbins, Gregory K. | Shafer, Robert W. | Gulick, Roy M. | Shikuma, Cecilia M. | Haubrich, Richard | Riddler, Sharon | Sax, Paul E. | Daar, Eric S. | Ribaudo, Heather J. | Agan, Brian | Agarwal, Shanu | Ahern, Richard L. | Allen, Brady L. | Altidor, Sherly | Altschuler, Eric L. | Ambardar, Sujata | Anastos, Kathryn | Anderson, Ben | Anderson, Val | Andrady, Ushan | Antoniskis, Diana | Bangsberg, David | Barbaro, Daniel | Barrie, William | Bartczak, J. | Barton, Simon | Basden, Patricia | Basgoz, Nesli | Bazner, Suzane | Bellos, Nicholaos C. | Benson, Anne M. | Berger, Judith | Bernard, Nicole F. | Bernard, Annette M. | Birch, Christopher | Bodner, Stanley J. | Bolan, Robert K. | Boudreaux, Emilie T. | Bradley, Meg | Braun, James F. | Brndjar, Jon E. | Brown, Stephen J. | Brown, Katherine | Brown, Sheldon T. | Burack, Jedidiah | Bush, Larry M. | Cafaro, Virginia | Campbell, Omobolaji | Campbell, John | Carlson, Robert H. | Carmichael, J. Kevin | Casey, Kathleen K. | Cavacuiti, Chris | Celestin, Gregory | Chambers, Steven T. | Chez, Nancy | Chirch, Lisa M. | Cimoch, Paul J. | Cohen, Daniel | Cohn, Lillian E. | Conway, Brian | Cooper, David A. | Cornelson, Brian | Cox, David T. | Cristofano, Michael V. | Cuchural, George | Czartoski, Julie L. | Dahman, Joseph M. | Daly, Jennifer S. | Davis, Benjamin T. | Davis, Kristine | Davod, Sheila M. | Deeks, Steven G. | DeJesus, Edwin | Dietz, Craig A. | Dunham, Eleanor | Dunn, Michael E. | Ellerin, Todd B. | Eron, Joseph J. | Fangman, John J.W. | Farel, Claire E. | Ferlazzo, Helen | Fidler, Sarah | Fleenor-Ford, Anita | Frankel, Renee | Freedberg, Kenneth A. | French, Neel K. | Fuchs, Jonathan D. | Fuller, Jon D. | Gaberman, Jonna | Gallant, Joel E. | Gandhi, Rajesh T. | Garcia, Efrain | Garmon, Donald | Gathe, Joseph C. | Gaultier, Cyril R. | Gebre, Wondwoosen | Gilman, Frank D. | Gilson, Ian | Goepfert, Paul A. | Gottlieb, Michael S. | Goulston, Claudia | Groger, Richard K. | Gurley, T. Douglas | Haber, Stuart | Hardwicke, Robin | Hardy, W. David | Harrigan, P. Richard | Hawkins, Trevor N. | Heath, Sonya | Hecht, Frederick M. | Henry, W. Keith | Hladek, Melissa | Hoffman, Robert P. | Horton, James M. | Hsu, Ricky K. | Huhn, Gregory D. | Hunt, Peter | Hupert, Mark J. | Illeman, Mark L. | Jaeger, Hans | Jellinger, Robert M. | John, Mina | Johnson, Jennifer A. | Johnson, Kristin L. | Johnson, Heather | Johnson, Kay | Joly, Jennifer | Jordan, Wilbert C. | Kauffman, Carol A. | Khanlou, Homayoon | Killian, Robert K. | Kim, Arthur Y. | Kim, David D. | Kinder, Clifford A. | Kirchner, Jeffrey T. | Kogelman, Laura | Kojic, Erna Milunka | Korthuis, P. Todd | Kurisu, Wayne | Kwon, Douglas S. | LaMar, Melissa | Lampiris, Harry | Lanzafame, Massimiliano | Lederman, Michael M. | Lee, David M. | Lee, Jean M.L. | Lee, Marah J. | Lee, Edward T.Y. | Lemoine, Janice | Levy, Jay A. | Llibre, Josep M. | Liguori, Michael A. | Little, Susan J. | Liu, Anne Y. | Lopez, Alvaro J. | Loutfy, Mono R. | Loy, Dawn | Mohammed, Debbie Y. | Man, Alan | Mansour, Michael K. | Marconi, Vincent C. | Markowitz, Martin | Marques, Rui | Martin, Jeffrey N. | Martin, Harold L. | Mayer, Kenneth Hugh | McElrath, M. Juliana | McGhee, Theresa A. | McGovern, Barbara H. | McGowan, Katherine | McIntyre, Dawn | Mcleod, Gavin X. | Menezes, Prema | Mesa, Greg | Metroka, Craig E. | Meyer-Olson, Dirk | Miller, Andy O. | Montgomery, Kate | Mounzer, Karam C. | Nagami, Ellen H. | Nagin, Iris | Nahass, Ronald G. | Nelson, Margret O. | Nielsen, Craig | Norene, David L. | O’Connor, David H. | Ojikutu, Bisola O. | Okulicz, Jason | Oladehin, Olakunle O. | Oldfield, Edward C. | Olender, Susan A. | Ostrowski, Mario | Owen, William F. | Pae, Eunice | Parsonnet, Jeffrey | Pavlatos, Andrew M. | Perlmutter, Aaron M. | Pierce, Michael N. | Pincus, Jonathan M. | Pisani, Leandro | Price, Lawrence Jay | Proia, Laurie | Prokesch, Richard C. | Pujet, Heather Calderon | Ramgopal, Moti | Rathod, Almas | Rausch, Michael | Ravishankar, J. | Rhame, Frank S. | Richards, Constance Shamuyarira | Richman, Douglas D. | Robbins, Gregory K. | Rodes, Berta | Rodriguez, Milagros | Rose, Richard C. | Rosenberg, Eric S. | Rosenthal, Daniel | Ross, Polly E. | Rubin, David S. | Rumbaugh, Elease | Saenz, Luis | Salvaggio, Michelle R. | Sanchez, William C. | Sanjana, Veeraf M. | Santiago, Steven | Schmidt, Wolfgang | Schuitemaker, Hanneke | Sestak, Philip M. | Shalit, Peter | Shay, William | Shirvani, Vivian N. | Silebi, Vanessa I. | Sizemore, James M. | Skolnik, Paul R. | Sokol-Anderson, Marcia | Sosman, James M. | Stabile, Paul | Stapleton, Jack T. | Starrett, Sheree | Stein, Francine | Stellbrink, Hans-Jurgen | Sterman, F. Lisa | Stone, Valerie E. | Stone, David R. | Tambussi, Giuseppe | Taplitz, Randy A. | Tedaldi, Ellen M. | Telenti, Amalio | Theisen, William | Torres, Richard | Tosiello, Lorraine | Tremblay, Cecile | Tribble, Marc A. | Trinh, Phuong D. | Tsao, Alice | Ueda, Peggy | Vaccaro, Anthony | Valadas, Emilia | Vanig, Thanes J. | Vecino, Isabel | Vega, Vilma M. | Veikley, Wenoah | Wade, Barbara H. | Walworth, Charles | Wanidworanun, Chingchai | Ward, Douglas J. | Warner, Daniel A. | Weber, Robert D. | Webster, Duncan | Weis, Steve | Wheeler, David A. | White, David J. | Wilkins, Ed | Winston, Alan | Wlodaver, Clifford G. | Wout, Angelique van’t | Wright, David P. | Yang, Otto O. | Yurdin, David L. | Zabukovic, Brandon W. | Zachary, Kimon C. | Zeeman, Beth | Zhao, Meng
Science (New York, N.Y.)  2010;330(6010):1551-1557.
Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection.
doi:10.1126/science.1195271
PMCID: PMC3235490  PMID: 21051598
2.  Accelerating Next Generation Vaccine Development for Global Disease Prevention 
Science (New York, N.Y.)  2013;340(6136):1232910.
Summary
Vaccines are among the greatest successes in the history of public health. However, past strategies for vaccine development are unlikely to succeed in the future against major global diseases such as AIDS, TB, and malaria. For such diseases, the correlates of protection are poorly defined and the pathogens evade immune detection and/or exhibit extensive genetic variability. Recent advances have heralded in a new era of vaccine discovery. However, translation of these advances into vaccines remains impeded by lack of understanding of key vaccinology principles in humans. We review these advances towards vaccine discovery and suggest that for accelerating successful vaccine development, new human immunology-based clinical research initiatives be implemented with the goal of elucidating and more effectively inducing vaccine-induced protective immune responses.
doi:10.1126/science.1232910
PMCID: PMC4026248  PMID: 23723240
3.  Genotypic and Functional Impact of HIV-1 Adaptation to Its Host Population during the North American Epidemic 
PLoS Genetics  2014;10(4):e1004295.
HLA-restricted immune escape mutations that persist following HIV transmission could gradually spread through the viral population, thereby compromising host antiviral immunity as the epidemic progresses. To assess the extent and phenotypic impact of this phenomenon in an immunogenetically diverse population, we genotypically and functionally compared linked HLA and HIV (Gag/Nef) sequences from 358 historic (1979–1989) and 382 modern (2000–2011) specimens from four key cities in the North American epidemic (New York, Boston, San Francisco, Vancouver). Inferred HIV phylogenies were star-like, with approximately two-fold greater mean pairwise distances in modern versus historic sequences. The reconstructed epidemic ancestral (founder) HIV sequence was essentially identical to the North American subtype B consensus. Consistent with gradual diversification of a “consensus-like” founder virus, the median “background” frequencies of individual HLA-associated polymorphisms in HIV (in individuals lacking the restricting HLA[s]) were ∼2-fold higher in modern versus historic HIV sequences, though these remained notably low overall (e.g. in Gag, medians were 3.7% in the 2000s versus 2.0% in the 1980s). HIV polymorphisms exhibiting the greatest relative spread were those restricted by protective HLAs. Despite these increases, when HIV sequences were analyzed as a whole, their total average burden of polymorphisms that were “pre-adapted” to the average host HLA profile was only ∼2% greater in modern versus historic eras. Furthermore, HLA-associated polymorphisms identified in historic HIV sequences were consistent with those detectable today, with none identified that could explain the few HIV codons where the inferred epidemic ancestor differed from the modern consensus. Results are therefore consistent with slow HIV adaptation to HLA, but at a rate unlikely to yield imminent negative implications for cellular immunity, at least in North America. Intriguingly, temporal changes in protein activity of patient-derived Nef (though not Gag) sequences were observed, suggesting functional implications of population-level HIV evolution on certain viral proteins.
Author Summary
Upon HIV transmission, many – though not all – immune escape mutations selected in the previous host will revert to the consensus residue. The persistence of certain escape mutations following transmission has led to concerns that these could gradually accumulate in circulating HIV sequences over time, thereby undermining host antiviral immune potential as the epidemic progresses. As certain immune-driven mutations reduce viral fitness, their spread through the population could also have consequences for the average replication capacity and/or protein function of circulating HIV sequences. Here, we characterized HIV sequences, linked to host immunogenetic information, from patients enrolled in historic (1979–1989) and modern (2000–2011) HIV cohorts from four key cities in the North American epidemic. We reconstructed the epidemic's ancestral (founder) HIV sequence and assessed the subsequent extent to which known HIV immune escape mutations have spread in the population. Our data support the gradual spread of many - though not all - immune escape mutations in HIV sequences over time, but to an extent that is unlikely to have major immediate immunologic consequences for the North American epidemic. Notably, in vitro assessments of ancestral and patient-derived HIV sequences suggested functional implications of ongoing HIV evolution for certain viral proteins.
doi:10.1371/journal.pgen.1004295
PMCID: PMC3998893  PMID: 24762668
4.  Association of HLA-DRB1-restricted CD4+ T cell responses with HIV immune control 
Nature medicine  2013;19(7):930-933.
The contribution of HLA class II-restricted CD4+ T cell responses to HIV immune control is poorly defined. Here, we delineated novel peptide-DRB1 restrictions in functional assays and analyzed the host genetic effects of HLA-DRB1 alleles on HIV viremia in a large cohort of HIV controllers and progressors (n=1085). We found distinct stratifications in the effect of HLA-DRB1 alleles on HIV viremia, with DRB1*15:02 significantly associated with low viremia (P=0.003, q=0.04) and DRB1*03:01 significantly associated with high viremia (P=0.004, q=0.04). Interestingly, a sub-group of HLA-DRB1 alleles linked with low viremia showed the ability to promiscuously present a larger breadth of peptides with lower functional avidity when compared to HLA-DRB1 alleles linked with high viremia (p=0.018). Our data provide systematic evidence that HLA-DRB1 allele expression significantly impacts the durable control of HIV replication, an effect that appears to be mediated primarily by the protein-specificity of HIV-specific CD4+ T cell responses to Gag and Nef.
doi:10.1038/nm.3229
PMCID: PMC3974408  PMID: 23793098
5.  HLA-Specific Intracellular Epitope Processing Shapes an Immunodominance Pattern for HLA-B*57 That Is Distinct from HLA-B*58:01 
Journal of Virology  2013;87(19):10889-10894.
HLA-B*57 is strongly associated with immune control of HIV and delayed AIDS progression. The closely related, but less protective, HLA-B*58:01 presents similar epitopes, but HLA-B*58:01+ individuals do not generate CD8+ T cells targeting the KF11-Gag epitope, which has been linked to low viremia. Here we show that HLA-B*58:01 binds and presents KF11 peptide, but HIV-infected HLA-B*58:01+ cells fail to process KF11. This unexpected finding demonstrates that immunodominance patterns can be influenced by intracellular events independent of HLA binding motifs.
doi:10.1128/JVI.01122-13
PMCID: PMC3807415  PMID: 23864640
6.  HIV and HLA Class I: an evolving relationship 
Immunity  2012;37(3):426-440.
Successful vaccine development for infectious diseases has largely been achieved in settings where natural immunity to the pathogen results in clearance in at least some individuals. HIV presents an additional challenge in that natural clearance of infection does not occur, and the correlates of immune protection are still uncertain. However, partial control of viremia and markedly different outcomes of disease are observed in HIV infected persons. Here we examine the antiviral mechanisms implicated by one variable that has been consistently associated with extremes of outcome, namely HLA class I alleles, and in particular HLA-B, and examine the mechanisms by which this modulation is likely to occur, and the impact of these interactions on evolution of the virus and the host. Studies to date provide evidence for both HLA-dependent and epitope-dependent influences on viral control and viral evolution, and have important implications for the continued quest for an effective HIV vaccine.
doi:10.1016/j.immuni.2012.09.005
PMCID: PMC3966573  PMID: 22999948
7.  Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design 
Immunity  2013;38(3):606-617.
Summary
A prophylactic or therapeutic vaccine offers the best hope to curb the HIV-AIDS epidemic gripping sub-Saharan Africa, but remains elusive. A major challenge is the extreme viral sequence variability among strains. Systematic means to guide immunogen design for highly variable pathogens like HIV are not available. Using computational models, we have developed an approach to translate available viral sequence data into quantitative landscapes of viral fitness as a function of the amino acid sequences of its constituent proteins. Predictions emerging from our computationally defined landscapes for the proteins of HIV-1 clade B Gag were positively tested against new in vitro fitness measurements, and were consistent with previously defined in vitro measurements and clinical observations. These landscapes chart the peaks and valleys of viral fitness as protein sequences change, and inform the design of immunogens and therapies that can target regions of the virus most vulnerable to selection pressure.
doi:10.1016/j.immuni.2012.11.022
PMCID: PMC3728823  PMID: 23521886
8.  LILRB2 Interaction with HLA Class I Correlates with Control of HIV-1 Infection 
PLoS Genetics  2014;10(3):e1004196.
Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10−2). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10−11–10−9) and African (p = 10−5–10−3) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement.
Author Summary
Leukocyte immunoglobulin-like receptors B1 and B2 (LILRB1 and LILRB2) bind HLA class I allotypes with variable affinities. Here, we show that the binding strength of LILRB2 to HLA class I positively associates with level of viremia in a large cohort of untreated HIV-1-infected patients. This effect appears to be driven by HLA-B polymorphism and demonstrates independence from class I allelic effects on viral load. Our in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of dendritic cells (DCs). Thus, we propose an impact of LILRB2 on HIV-1 immune control through altered regulation of DCs by LILRB2-HLA engagement.
doi:10.1371/journal.pgen.1004196
PMCID: PMC3945438  PMID: 24603468
9.  T cell receptor clonotypes modulate the protective effect of HLA class I alleles in HIV-1 infection 
Nature immunology  2012;13(7):691-700.
Human leukocyte antigen (HLA) B*27 and B*57 are associated with protection against HIV-1 disease progression, yet most persons expressing these alleles are unable to control HIV-1. Here we show that HLA-B*27-restricted CD8+ T cells in controllers and progressors differ in their ability to inhibit virus replication through targeting of the immunodominant Gag epitope. This is associated with distinct TCR clonotypes, characterized by superior control of HIV-1 replication in vitro, greater cross-reactivity against epitope variants, and enhanced perforin delivery. Clonotype-specific differences in antiviral efficacy were also observed for an immunodominant HLA-B*57 restricted response in controllers and progressors. Thus, the efficacy of protective alleles is modulated by specific TCR clonotypes selected in natural infection, providing a functional explanation for divergent HIV-1 outcomes.
doi:10.1038/ni.2342
PMCID: PMC3538851  PMID: 22683743
10.  The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function 
Scientific Reports  2014;4:4087.
Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function.
doi:10.1038/srep04087
PMCID: PMC3923210  PMID: 24522437
11.  High Avidity CD8+ T Cells Efficiently Eliminate Motile HIV-Infected Targets and Execute a Locally Focused Program of Anti-Viral Function 
PLoS ONE  2014;9(2):e87873.
The dissemination of HIV from an initial site of infection is facilitated by motile HIV-infected CD4+ T-cells. However, the impact of infected target cell migration on antigen recognition by HIV-specific CD8+ T-cells is unclear. Using a 3D in vitro model of tissue, we visualized dynamic interactions between HIV-infected or peptide-pulsed CD4+ T-cells and HIV-specific CD8+ T-cells. CTLs engaged motile HIV-infected targets, but ∼50% of targets broke contact and escaped. In contrast, immobilized target cells were readily killed, indicating target motility directly inhibits CD8+ T-cell function. Strong calcium signals occurred in CTLs killing a motile target but calcium signaling was weak or absent in CTLs which permitted target escape. Neutralization of adhesion receptors LFA-1 and CD58 inhibited CD8+ T-cell function within the 3D matrix, demonstrating that efficient motile target lysis as dependent on adhesive engagement of targets. Antigen sensitivity (a convolution of antigen density, TCR avidity and CD8 coreceptor binding) is also critical for target recognition. We modulated this parameter (known as functional avidity but referred to here as “avidity” for the sake of simplicity) by exploiting common HIV escape mutations and measured their impact on CTL function at the single-cell level. Targets pulsed with low avidity mutant antigens frequently escaped while CTLs killed targets bearing high avidity antigen with near-perfect efficiency. CTLs engaged, arrested, and killed an initial target bearing high avidity antigen within minutes, but serial killing was surprisingly rare. CD8 cells remained committed to their initial dead target for hours, accumulating TCR signals that sustained secretion of soluble antiviral factors. These data indicate that high-avidity CD8+ T-cells execute an antiviral program in the precise location where antigen has been sensed: CTL effector functions are spatiotemporally coordinated with an early lytic phase followed by a sustained stationary secretory phase to control local viral infection.
doi:10.1371/journal.pone.0087873
PMCID: PMC3923750  PMID: 24551068
12.  HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome 
Science translational medicine  2012;4(123):123ra25.
Early immunological events during acute HIV infection are thought to fundamentally influence long-term disease outcome. Whereas the contribution of HIV-specific CD8 T cell responses to early viral control is well established, the role of HIV-specific CD4 T cell responses in the control of viral replication following acute infection is unknown. A growing body of evidence suggests that CD4 T cells - besides their helper function - have the capacity to directly recognize and kill virally infected cells. In a longitudinal study of a cohort of individuals acutely infected with HIV, we observed that subjects able to spontaneously control HIV replication in the absence of antiretroviral therapy showed a significant expansion of HIV-specific CD4 T cell responses—but not CD8 T cell responses–compared to subjects who progressed to a high viral set point (p=0.038). Strikingly, this expansion occurred prior to differences in viral load or CD4 T cell count and was characterized by robust cytolytic activity and expression of a distinct profile of perforin and granzymes at the earliest time point. Kaplan-Meier analysis revealed that the emergence of Granzyme A+ HIV-specific CD4 T cell responses at baseline was highly predictive of slower disease progression and clinical outcome (average days to CD4 T cell count <350/μl was 575 versus 306, p=0.001). These data demonstrate that HIV-specific CD4 T cell responses can be used during the earliest phase of HIV infection as an immunological predictor of subsequent viral set point and disease outcome. Moreover, these data suggest that expansion of Granzyme A+ HIV-specific cytolytic CD4 T cell responses early during acute HIV infection contributes substantially to the control of viral replication.
doi:10.1126/scitranslmed.3003165
PMCID: PMC3918726  PMID: 22378925
13.  Prolonged Exposure to HIV Reinforces a Poised Epigenetic Program for PD-1 Expression in Virus-specific CD8 T Cells 
Antigen-specific CD8 T cells play a critical role in controlling HIV infection but eventually lose antiviral functions in part because of expression and signaling through the inhibitory PD-1 receptor. To better understand the impact of prolonged TCR ligation on regulation of PD-1 expression in HIV-specific CD8 T cells we investigated the capacity of virus-specific CD8 T cells to modify the PD-1 epigenetic program following reduction in viral load. We observed that the transcriptional regulatory region was unmethylated in the PD-1hi HIV-specific CD8 T cells while it remained methylated in donor matched naïve cells at acute and chronic stages of infection. Surprisingly, the PD-1 promoter remained unmethylated in HIV-specific CD8 T cells from subjects with a viral load controlled by antiviral therapy for greater than 2 years or from elite controllers. Together these data demonstrate that the epigenetic program at the PD-1 locus becomes fixed following prolonged exposure to HIV virus.
doi:10.4049/jimmunol.1203161
PMCID: PMC3702641  PMID: 23772031
14.  Low Levels of Peripheral CD161++CD8+ Mucosal Associated Invariant T (MAIT) Cells Are Found in HIV and HIV/TB Co-Infection 
PLoS ONE  2013;8(12):e83474.
Background
High expression of CD161 on CD8+ T cells is associated with a population of cells thought to play a role in mucosal immunity. We wished to investigate this subset in an HIV and Mycobacterium tuberculosis (MTB) endemic African setting.
Methods
A flow cytometric approach was used to assess the frequency and phenotype of CD161++CD8+ T cells. 80 individuals were recruited for cross-sectional analysis: controls (n = 13), latent MTB infection (LTBI) only (n = 14), pulmonary tuberculosis (TB) only (n = 9), HIV only (n = 16), HIV and LTBI co-infection (n = 13) and HIV and TB co-infection (n = 15). The impact of acute HIV infection was assessed in 5 individuals recruited within 3 weeks of infection. The frequency of CD161++CD8+ T cells was assessed prior to and during antiretroviral therapy (ART) in 14 HIV-positive patients.
Results
CD161++CD8+ T cells expressed high levels of the HIV co-receptor CCR5, the tissue-homing marker CCR6, and the Mucosal-Associated Invariant T (MAIT) cell TCR Vα7.2. Acute and chronic HIV were associated with lower frequencies of CD161++CD8+ T cells, which did not correlate with CD4 count or HIV viral load. ART was not associated with an increase in CD161++CD8+ T cell frequency. There was a trend towards lower levels of CD161++CD8+ T cells in HIV-negative individuals with active and latent TB. In those co-infected with HIV and TB, CD161++CD8+ T cells were found at low levels similar to those seen in HIV mono-infection.
Conclusions
The frequencies and phenotype of CD161++CD8+ T cells in this South African cohort are comparable to those published in European and US cohorts. Low-levels of this population were associated with acute and chronic HIV infection. Lower levels of the tissue-trophic CD161++ CD8+ T cell population may contribute to weakened mucosal immune defense, making HIV-infected subjects more susceptible to pulmonary and gastrointestinal infections and detrimentally impacting on host defense against TB.
doi:10.1371/journal.pone.0083474
PMCID: PMC3877057  PMID: 24391773
15.  Is an HIV Vaccine Possible? 
Journal of acquired immune deficiency syndromes (1999)  2012;60(0 2):10.1097/QAI.0b013e31825b7118.
Although many new prevention modalities that include the use of antiretroviral drugs (ARVs) show promise, there is no question that a global solution to the HIV epidemic will not be economically or logistically feasible without the development of vaccine that provides durable protection. In the best case scenario, the vaccine has to protect against acquisition of infection, likely mediated by Env-specific B cell responses combined with CD4+ T cell responses to evoke full maturation and maintenance of protective antibodies. But HIV-specific CD8+ T cell responses are also likely to be a key element, particularly for those inevitable situations in which full vaccine-induced protection from acquisition is not achieved, in which case durable control of established infection will be required. Although there is reason to be optimistic that an effective HIV vaccine is possible, one of the major constraints moving forward will likely be constraints on funding to support a diversity of concepts at a time that the correlates of protection from acquisition and disease progression are still unknown. Given the scope of the epidemic and the economic climate, we must strive to do much more with less and seek to access additional resources, both scientific and monetary, from every possible source.
doi:10.1097/QAI.0b013e31825b7118
PMCID: PMC3401528  PMID: 22772390
Vaccine; Antiretrovirals; Economy
16.  Temporal effect of HLA-B*57 on viral control during primary HIV-1 infection 
Retrovirology  2013;10:139.
Background
HLA-B alleles are associated with viral control in chronic HIV-1 infection, however, their role in primary HIV-1 disease is unclear. This study sought to determine the role of HLA-B alleles in viral control during the acute phase of HIV-1 infection and establishment of the early viral load set point (VLSP).
Findings
Individuals identified during primary HIV-1 infection were HLA class I typed and followed longitudinally. Associations between HLA-B alleles and HIV-1 viral replication during acute infection and VLSP were analyzed in untreated subjects. The results showed that neither HLA-B*57 nor HLA-B*27 were significantly associated with viral control during acute HIV-1 infection (Fiebig stage I-IV, n=171). HLA-B*57 was however significantly associated with a subsequent lower VLSP (p<0.001, n=135) with nearly 1 log10 less median viral load. Analysis of a known polymorphism at position 97 of HLA-B showed significant associations with both lower initial viral load (p<0.01) and lower VLSP (p<0.05). However, this association was dependent on different amino acids at this position for each endpoint.
Conclusions
The effect of HLA-B*57 on viral control is more pronounced during the later stages of primary HIV-1 infection, which suggests the underlying mechanism of control occurs at a critical period in the first several months after HIV-1 acquisition. The risk profile of polymorphisms at position 97 of HLA-B are more broadly associated with HIV-1 viral load during primary infection and may serve as a focal point in further studies of HLA-B function.
doi:10.1186/1742-4690-10-139
PMCID: PMC3874665  PMID: 24245727
HLA-B*57; HLA-B; Acute HIV-1 infection; Primary HIV-1 infection; Viral load set point; MHC class I
17.  Identification of HIV-1-specific regulatory T-cells using HLA class II tetramers 
AIDS (London, England)  2012;26(16):10.1097/QAD.0b013e328358cc75.
Regulatory T cells (Tregs) are potent immune modulators, but their precise role in HIV pathogenesis remains incompletely understood. Most studies to date have focused on frequencies or phenotypes of “bulk” Treg populations. However, although antigen-specific Tregs have been reported in other diseases, HIV-1-epitope specific Tregs have not been described to date. We here report the first identification of functional HIV-1-Gag-specific regulatory T cells using human leukocyte antigen class II tetramer staining in HIV-1-infected individuals.
doi:10.1097/QAD.0b013e328358cc75
PMCID: PMC3825094  PMID: 22874519
18.  A BLUEPRINT FOR HIV VACCINE DISCOVERY 
Cell host & microbe  2012;12(4):396-407.
Despite numerous attempts over many years to develop an HIV vaccine based on classical strategies, none has convincingly succeeded to date. A number of approaches are being pursued in the field, including building upon possible efficacy indicated by the recent RV144 clinical trial, which combined two HIV vaccines. Here, we argue for an approach based, in part, on understanding the HIV envelope spike and its interaction with broadly neutralizing antibodies (bnAbs) at the molecular level and using this understanding to design immunogens as possible vaccines. BnAbs can protect against virus challenge in animal models and many such antibodies have been isolated recently. We further propose that studies focused on how best to provide T cell help to B cells that produce bnAbs are crucial for optimal immunization strategies. The synthesis of rational immunogen design and immunization strategies, together with iterative improvements, offers great promise for advancing toward an HIV vaccine.
doi:10.1016/j.chom.2012.09.008
PMCID: PMC3513329  PMID: 23084910
19.  Non-Immunogenicity of Overlapping Gag Peptides Pulsed on Autologous Cells after Vaccination of HIV Infected Individuals 
PLoS ONE  2013;8(10):e74389.
Background
HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL) has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation.
Methodology
We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach ‘OPAL-HIV-Gag(c)’. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma) on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6), 24 mg (n = 7), 48 mg (n = 2) or matching placebo (n = 8) with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS).
Results
The OPAL-HIV-Gag(c) peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c), 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours) in OPAL-HIV-Gag(c) but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001), compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16).
Conclusion/Significance
Despite strong immunogenicity observed in several Macaca nemestrina studies using this approach, OPAL-HIV-Gag(c) was not significantly immunogenic in humans and improved methods of generating high-frequency Gag-specific T-cell responses are required.
Name of Registry
ClinicalTrials.gov, Registry number: NCT01123915, URL trial registry database: http://www.clinicaltrials.gov/ct2/results?term=OPAL-HIV-1001&Search=Search
doi:10.1371/journal.pone.0074389
PMCID: PMC3790804  PMID: 24124451
20.  Fine-mapping classical HLA variation associated with durable host control of HIV-1 infection in African Americans 
Human Molecular Genetics  2012;21(19):4334-4347.
A small proportion of human immunodeficiency virus-1 (HIV-1) infected individuals, termed HIV-1 controllers, suppress viral replication to very low levels in the absence of therapy. Genetic investigations of this phenotype have strongly implicated variation in the class I major histocompatibility complex (MHC) region as key to HIV-1 control. We collected sequence-based classical class I HLA genotypes at 4-digit resolution in HIV-1-infected African American controllers and progressors (n = 1107), and tested them for association with host control using genome-wide single nucleotide polymorphism data to account for population structure. Several classical alleles at HLA-B were associated with host control, including B*57:03 [odds ratio (OR) = 5.1; P= 3.4 × 10–18] and B*81:01 (OR = 4.8; P= 1.3 × 10−9). Analysis of variable amino acid positions demonstrates that HLA-B position 97 is the most significant association with host control in African Americans (omnibus P = 1.2 × 10−21) and explains the signal of several HLA-B alleles, including B*57:03. Within HLA-B, we also identified independent effects at position 116 (omnibus P= 2.8 × 10−15) in the canonical F pocket, position 63 in the B pocket (P= 1.5 × 10−3) and the non-pocket position 245 (P= 8.8 × 10−10), which is thought to influence CD8-binding kinetics. Adjusting for these HLA-B effects, there is evidence for residual association in the MHC region. These results underscore the key role of HLA-B in affecting HIV-1 replication, likely through the molecular interaction between HLA-B and viral peptides presented by infected cells, and suggest that sites outside the peptide-binding pocket also influence HIV-1 control.
doi:10.1093/hmg/dds226
PMCID: PMC3441117  PMID: 22718199
21.  Ability of HIV-1 Nef to downregulate CD4 and HLA class I differs among viral subtypes 
Retrovirology  2013;10:100.
Background
The highly genetically diverse HIV-1 group M subtypes may differ in their biological properties. Nef is an important mediator of viral pathogenicity; however, to date, a comprehensive inter-subtype comparison of Nef in vitro function has not been undertaken. Here, we investigate two of Nef’s most well-characterized activities, CD4 and HLA class I downregulation, for clones obtained from 360 chronic patients infected with HIV-1 subtypes A, B, C or D.
Results
Single HIV-1 plasma RNA Nef clones were obtained from N=360 antiretroviral-naïve, chronically infected patients from Africa and North America: 96 (subtype A), 93 (B), 85 (C), and 86 (D). Nef clones were expressed by transfection in an immortalized CD4+ T-cell line. CD4 and HLA class I surface levels were assessed by flow cytometry. Nef expression was verified by Western blot. Subset analyses and multivariable linear regression were used to adjust for differences in age, sex and clinical parameters between cohorts. Consensus HIV-1 subtype B and C Nef sequences were synthesized and functionally assessed. Exploratory sequence analyses were performed to identify potential genotypic correlates of Nef function. Subtype B Nef clones displayed marginally greater CD4 downregulation activity (p = 0.03) and markedly greater HLA class I downregulation activity (p < 0.0001) than clones from other subtypes. Subtype C Nefs displayed the lowest in vitro functionality. Inter-subtype differences in HLA class I downregulation remained statistically significant after controlling for differences in age, sex, and clinical parameters (p < 0.0001). The synthesized consensus subtype B Nef showed higher activities compared to consensus C Nef, which was most pronounced in cells expressing lower protein levels. Nef clones exhibited substantial inter-subtype diversity: cohort consensus residues differed at 25% of codons, while a similar proportion of codons exhibited substantial inter-subtype differences in major variant frequency. These amino acids, along with others identified in intra-subtype analyses, represent candidates for mediating inter-subtype differences in Nef function.
Conclusions
Results support a functional hierarchy of subtype B > A/D > C for Nef-mediated CD4 and HLA class I downregulation. The mechanisms underlying these differences and their relevance to HIV-1 pathogenicity merit further investigation.
doi:10.1186/1742-4690-10-100
PMCID: PMC3849644  PMID: 24041011
HIV/AIDS; Nef; Viral diversity; Pathogenesis; CD4; HLA class I
22.  Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells 
After antigen encounter, naive lymphocytes differentiate into populations of memory cells that share a common set of functions including faster response to antigen re-exposure and the ability to self-renew. However memory lymphocytes in different lymphocyte lineages are functionally and phenotypically diverse. It is not known whether discrete populations of T and B cells use similar transcriptional programs during differentiation into the memory state. We used cross-species genomic analysis to examine the pattern of genes upregulated during the differentiation of naive lymphocytes into memory cells in multiple populations of human CD4, CD8 and B cell lymphocytes as well as two mouse models of memory development. We identified and validated a signature of genes that was upregulated in memory cells compared to naive cells in both human and mouse CD8 memory differentiation, suggesting marked evolutionary conservation of this transcriptional program. Surprisingly, this conserved CD8 differentiation signature was also upregulated during memory differentiation in CD4 and B cell lineages. To validate the biologic significance of this signature we showed that alterations in this signature of genes could distinguish between functional and exhausted CD8 T cells from a mouse model of chronic viral infection. Finally, we generated genome-wide microarray data from tetramer-sorted human T cells and showed profound differences in this differentiation signature between T cells specific for HIV from those specific for influenza. Thus, our data suggest that in addition to lineage-specific differentiation programs, T and B lymphocytes employ a common transcriptional program during memory development that is disrupted in chronic viral infection.
PMCID: PMC3771862  PMID: 18641323
23.  Nef-Specific CD8+ T Cell Responses Contribute to HIV-1 Immune Control 
PLoS ONE  2013;8(9):e73117.
Recent studies in the SIV-macaque model of HIV infection suggest that Nef-specific CD8+ T-cell responses may mediate highly effective immune control of viraemia. In HIV infection Nef recognition dominates in acute infection, but in large cohort studies of chronically infected subjects, breadth of T cell responses to Nef has not been correlated with significant viraemic control. Improved disease outcomes have instead been associated with targeting Gag and, in some cases, Pol. However analyses of the breadth of Nef-specific T cell responses have been confounded by the extreme immunogenicity and multiple epitope overlap within the central regions of Nef, making discrimination of distinct responses impossible via IFN-gamma ELISPOT assays. Thus an alternative approach to assess Nef as an immune target is needed. Here, we show in a cohort of >700 individuals with chronic C-clade infection that >50% of HLA-B-selected polymorphisms within Nef are associated with a predicted fitness cost to the virus, and that HLA-B alleles that successfully drive selection within Nef are those linked with lower viral loads. Furthermore, the specific CD8+ T cell epitopes that are restricted by protective HLA Class I alleles correspond substantially to effective SIV-specific epitopes in Nef. Distinguishing such individual HIV-specific responses within Nef requires specific peptide-MHC I tetramers. Overall, these data suggest that CD8+ T cell targeting of certain specific Nef epitopes contributes to HIV suppression. These data suggest that a re-evaluation of the potential use of Nef in HIV T-cell vaccine candidates would be justified.
doi:10.1371/journal.pone.0073117
PMCID: PMC3759414  PMID: 24023819
24.  Differential regulation of TLR pathways in acute and chronic HIV-1 infection 
AIDS (London, England)  2012;26(5):533-541.
Objective and design
The objective of this study was to determine changes in TLR responses of monocytes, myeloid dendritic cells and plasmacytoid dendritic cells during primary and chronic HIV-1 infection. Toll-like receptors (TLRs) serve as important innate receptors to sense pathogens, and have been implicated in mediating immune activation in HIV-1 infection. Studies assessing the consequences of HIV-1 infection on the ability of innate immune cells to respond to TLR stimulation have come to varying conclusions.
Methods
Using intracellular flow cytometry, cytokine production by cryopreserved PBMCs from healthy controls and HIV-1 infected individuals were examined after TLR stimulation.
Results
We observed that the effect of HIV-1 infection on TLR responses not only depended on the stage of HIV-1 infection, but was also dependent on the individual receptor and cell type examined. Monocyte and mDC responses to TLR8 stimulation were associated with HIV-1 viral load and CD4+ T cell count, while pDC responses to TLR7 stimulation were not. Responses to TLR2 stimulation were not affected by HIV-1 infection while responses to TLR9 stimulation were universally decreased in all HIV-1 infected individuals examined regardless of treatment or clinical parameters.
Conclusion
Responsiveness to TLR7/8 stimulation, which have been shown to recognize HIV-1 ssRNA, did not decrease in chronic infection, and may represent a contributing factor to ongoing T cell immune activation in the setting of chronic viremic HIV-1 infection.
doi:10.1097/QAD.0b013e32834f3167
PMCID: PMC3738004  PMID: 22210629
HIV-1; Toll-like receptor; Innate immunity; Pathogenesis; Dendritic Cells; Monocytes

Results 1-25 (217)