PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Workshop Summary: Novel Biomarkers for HIV Incidence Assay Development 
Abstract
Reliable methods for measuring human immunodeficiency virus (HIV) incidence are a high priority for HIV prevention. They are particularly important to assess the population-level effectiveness of new prevention strategies, to evaluate the community-wide impact of ongoing prevention programs, and to assess whether a proposed prevention trial can be performed in a timely and cost-efficient manner in a particular population and setting. New incidence assays and algorithms that are accurate, rapid, cost-efficient, and can be performed on easily-obtained specimens are urgently needed. On May 4, 2011, the Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), sponsored a 1-day workshop to examine strategies for developing new assays to distinguish recent from chronic HIV infections. Participants included leading investigators, clinicians, public health experts, industry, regulatory specialists, and other stakeholders. Immune-based parameters, markers of viral sequence diversity, and other biomarkers such as telomere length were evaluated. Emerging nanotechnology and chip-based diagnostics, including algorithms for performing diverse assays on a single platform, were also reviewed. This report summarizes the presentations, panel discussions, and the consensus reached for pursuing the development of a new generation of HIV incidence assays.
doi:10.1089/aid.2011.0332
PMCID: PMC3358102  PMID: 22206265
2.  In Vitro and In Vivo Properties of Dihydrophthalazine Antifolates, a Novel Family of Antibacterial Drugs▿  
Racemic 2,4-diaminopyrimidine dihydrophthalazine derivatives BAL0030543, BAL0030544, and BAL0030545 exhibited low in vitro MICs toward small, selected panels of Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Moraxella catarrhalis, and Mycobacterium avium, though the compounds were less active against Haemophilus influenzae. The constellation of dihydrofolate reductases (DHFRs) present in 20 enterococci and 40 staphylococci was analyzed and correlated with the antibacterial activities of the dihydrophthalazines and trimethoprim. DHFRs encoded by dfrB, dfrA (S1 isozyme), dfrE, and folA were susceptible to the dihydrophthalazines, whereas DHFRs encoded by dfrG (S3 isozyme) and dfrF were not. Studies with the separated enantiomers of BAL0030543, BAL0030544, and BAL0030545 revealed preferential inhibition of susceptible DHFRs by the (R)-enantiomers. BAL0030543, BAL0030544, and BAL0030545 were well tolerated by mice during 5- and 10-day oral toxicity studies at doses of up to 400 mg/kg of body weight. Using a nonoptimized formulation, the dihydrophthalazines displayed acceptable oral bioavailabilities in mice, and efficacy studies with a septicemia model of mice infected with trimethoprim-resistant, methicillin-resistant Staphylococcus aureus gave 50% effective dose values in the range of 1.6 to 6.25 mg/kg.
doi:10.1128/AAC.00377-09
PMCID: PMC2737855  PMID: 19546364
3.  Antistaphylococcal Activity of Dihydrophthalazine Antifolates, a Family of Novel Antibacterial Drugs ▿  
For a panel of 153 Staphylococcus aureus clinical isolates (including 13 vancomycin-intermediate or heterogeneous vancomycin-intermediate and 4 vancomycin-resistant strains), MIC50s and MIC90s of three novel dihydrophthalazine antifolates, BAL0030543, BAL0030544, and BAL0030545, were 0.03 and 0.25 μg/ml, respectively, for methicillin-susceptible strains and 0.03 and ≤0.25 μg/ml, respectively, for methicillin-resistant strains. For a panel of 160 coagulase-negative staphylococci (including 5 vancomycin-intermediate and heterogeneous vancomycin-intermediate strains and 7 linezolid-nonsusceptible strains), MIC50s and MIC90s were ≤0.03 and ≤0.06 μg/ml, respectively, for methicillin-susceptible strains and 0.06 and 0.5 μg/ml, respectively, for methicillin-resistant strains. Vancomycin was active against 93.0% of 313 staphylococci examined; linezolid was active against all S. aureus strains and 95.6% of coagulase-negative staphylococcus strains, whereas elevated MICs of clindamycin, minocycline, trimethoprim, and rifampin for some strains were observed. At 4× MIC, the dihydrophthalazines were bactericidal against 11 of 12 staphylococcal strains surveyed. The prolonged serial passage of some staphylococcal strains in the presence of subinhibitory concentrations of BAL0030543, BAL0030544, and BAL0030545 produced clones for which dihydrophthalazines showed high MICs (>128 μg/ml), although rates of endogenous resistance development were much lower for the dihydrophthalazines than for trimethoprim. Single-step platings of naïve staphylococci onto media containing dihydrophthalazine antifolates indicated considerable variability among strains with respect to preexistent subpopulations nonsusceptible to dihydrophthalazine antifolates.
doi:10.1128/AAC.01619-08
PMCID: PMC2663101  PMID: 19188385
4.  Efficacies of Ceftobiprole Medocaril and Comparators in a Rabbit Model of Osteomyelitis Due to Methicillin-Resistant Staphylococcus aureus▿  
The pharmacokinetics and distribution into bone tissue of ceftobiprole in uninfected New Zealand White rabbits were determined after subcutaneous administration of the prodrug ceftobiprole medocaril. Serum exposure (maximum concentration of the drug in serum, trough concentration, area under the concentration-time curve) to ceftobiprole at 20 and 80 mg/kg was dose proportional, and there was no accumulation of ceftobiprole following repeated (every 6 h [q6h]) injections of the antibiotic. Ceftobiprole titers in the tibial matrix and marrow were 3.2 ± 1.3 μg/g and 11.2 ± 6.5 μg/g, respectively, in uninfected animals treated with 20 mg/kg of the antibiotic and 13.4 ± 7.3 μg/g and 66.3 ± 43.2 μg/g, respectively, in uninfected animals treated with 80 mg/kg of the antibiotic. No differences in ceftobiprole titers were observed between right and left tibiae for either bone matrix or marrow. The efficacies of 4 weeks of treatment with ceftobiprole (40 mg/kg administered subcutaneously [s.c.] q6h), vancomycin (30 mg/kg administered s.c. q12h), or linezolid (60 mg/kg administered orally q8h) were compared, using a rabbit model of methicillin-resistant Staphylococcus aureus tibial osteomyelitis. After treatment with ceftobiprole, the bacterial titers in all infected left tibiae from evaluable rabbits were below the level of detection, whereas only 73% of infected left tibiae from vancomycin- or linezolid-treated animals had bacterial titers below the level of detection; the mean titers of ceftobiprole were 3 to 5 times higher in infected left tibiae than in uninfected right tibiae. These results indicate that ceftobiprole provided effective parenteral treatment of osteomyelitis in this rabbit model.
doi:10.1128/AAC.00638-07
PMCID: PMC2346653  PMID: 18332175
5.  Antipropionibacterial Activity of BAL19403, a Novel Macrolide Antibiotic▿  
BAL19403 exemplifies a new family of macrolide antibiotics with excellent in vitro activity against propionibacteria. MICs indicated that BAL19403 was very active against erythromycin-resistant and clindamycin-resistant propionibacteria with mutations in the region from positions 2057 to 2059 (Escherichia coli numbering) of the 23S rRNA, although it is less active against those rare clinical isolates in which a methyltransferase, ErmX, confers macrolide and lincosamide resistance by dimethylation of the adenine moiety at position 2058. BAL19403 was predominantly bacteriostatic toward the propionibacteria, and population analyses indicated resistance selection frequencies for BAL19403 and the comparator drugs (erythromycin, clindamycin) in the range 10−8 to 10−9 for cutaneous propionibacteria with diverse antibiotic resistance profiles. On the basis of its antipropionibacterial activity and its high anti-inflammatory activity, BAL19403 represents a promising topical treatment for mild to moderate inflammatory acne vulgaris.
doi:10.1128/AAC.00062-07
PMCID: PMC1891356  PMID: 17387155
6.  Activities of Ceftobiprole, a Novel Broad-Spectrum Cephalosporin, against Haemophilus influenzae and Moraxella catarrhalis 
Ceftobiprole, a broad-spectrum pyrrolidinone-3-ylidenemethyl cephem currently in phase III clinical trials, had MICs between 0.008 μg/ml and 8.0 μg/ml for 321 clinical isolates of Haemophilus influenzae and between ≤0.004 μg/ml and 1.0 μg/ml for 49 clinical isolates of Moraxella catarrhalis. Ceftobiprole MIC50 and MIC90 values for H. influenzae were 0.06 μg/ml and 0.25 μg/ml for β-lactamase-positive strains (n = 262), 0.03 μg/ml and 0.25 μg/ml for β-lactamase-negative strains (n = 40), and 0.5 μg/ml and 2.0 μg/ml for β-lactamase-negative ampicillin-resistant strains (n = 19), respectively. Ceftobiprole MIC50 and MIC90 values for β-lactamase-positive M. catarrhalis strains (n = 40) were 0.12 μg/ml and 0.5 μg/ml, respectively, whereas the ceftobiprole MIC range for β-lactamase-negative M. catarrhalis strains (n = 9) was ≤0.004 to 0.03 μg/ml. Ceftriaxone MICs usually were generally at least twofold lower than those of ceftobiprole, whereas amoxicillin-clavulanate MICs usually were higher than those of ceftobiprole. Azithromycin and telithromycin had unimodal MIC distributions against H. influenzae, with MIC90 values of azithromycin and telithromycin of 2 μg/ml and 4 μg/ml, respectively. Except for selected quinolone-nonsusceptible H. influenzae strains, moxifloxacin proved highly active, with MIC90 values of 0.12 μg/ml. Time-kill analyses showed that ceftobiprole, ceftriaxone, cefpodoxime, amoxicillin-clavulanate, azithromycin, telithromycin, and moxifloxacin were bactericidal at 2× MIC by 24 h against all 10 H. influenzae strains surveyed. Only modest increases in MICs were found for H. influenzae or M. catarrhalis clones after 50 serial passages in the presence of subinhibitory concentrations of ceftobiprole, and single-passage selection showed that the selection frequency of H. influenzae or M. catarrhalis clones with elevated ceftobiprole MICs is quite low.
doi:10.1128/AAC.00044-06
PMCID: PMC1479120  PMID: 16723565
7.  Antistaphylococcal Activity of Ceftobiprole, a New Broad-Spectrum Cephalosporin 
Antimicrobial Agents and Chemotherapy  2005;49(10):4210-4219.
Ceftobiprole (formerly BAL9141), the active component of the prodrug BAL5788 (ceftobiprole medocaril), is a novel cephalosporin with expanded activity against gram-positive bacteria. Among 152 Staphylococcus aureus isolates, including 5 vancomycin-intermediate and 2 vancomycin-resistant strains, MIC50 and MIC90 values for ceftobiprole were each 0.5 μg/ml against methicillin-susceptible strains and 2 μg/ml against methicillin-resistant strains. Against 151 coagulase-negative staphylococci (including 4 vancomycin-intermediate strains), MIC50 and MIC90 values were, respectively, 0.125 μg/ml and 1 μg/ml against methicillin-susceptible and 1 μg/ml and 2 μg/ml against methicillin-resistant strains. Teicoplanin was less active than vancomycin against coagulase-negative strains. Linezolid, quinupristin-dalfopristin, and daptomycin were active against all strains, whereas increased MICs for amoxicillin-clavulanate, cefazolin, minocycline, gentamicin, trimethoprim-sulfamethoxazole, levofloxacin, rifampin, mupirocin, fusidic acid, and fosfomycin were sometimes observed. At 2× MIC, ceftobiprole was bactericidal against 11 of 12 test strains by 24 h. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to select for clones with MICs >4 times those of the parents; the maximum MIC achieved for ceftobiprole after 50 passages (in 1 of 10 strains) was 8 μg/ml. Single-passage selections showed very low frequencies of resistance to ceftobiprole irrespective of genotype or phenotype; the maximal ceftobiprole MIC of recovered clones was 8 μg/ml.
doi:10.1128/AAC.49.10.4210-4219.2005
PMCID: PMC1251547  PMID: 16189100
8.  Antipneumococcal Activity of Ceftobiprole, a Novel Broad-Spectrum Cephalosporin 
Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC50 and MIC90 values (μg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1× and 2× the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2× the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2× the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.
doi:10.1128/AAC.49.5.1932-1942.2005
PMCID: PMC1087675  PMID: 15855516
9.  Use of Monte Carlo Simulations To Select Therapeutic Doses and Provisional Breakpoints of BAL9141 
BAL9141, a new antimicrobial agent belonging to the class of parenteral pyrrolidinone-3-ylidenemethyl cephalosporins, is active against most gram-positive microorganisms, including methicillin-resistant variants (methicillin-resistant Staphylococcus aureus [MRSA] and methicillin-resistant Staphylococcus epidermidis [MRSE]), as well as against penicillin-resistant pneumococci (PRP) and many gram-negative microorganisms. BAL9141 is administered as the prodrug BAL5788, which is rapidly converted to BAL9141 by plasma esterases. Pharmacokinetic (PK) data obtained in a previous multiple ascending dose study were used to fit a population PK model to using the NPEM2 program, yielding PK parameter estimates and its covariance matrix for BAL9141. These estimates and matrix were used to perform Monte Carlo simulations (MCSs) and obtain unbiased target attainment rates (TARs) for various time periods during which the concentration remains above the MIC (T>MIC). Assuming a T>MIC of 40%, TARs of 100% were reached with a dose of 500 mg/liter every 12 h for pathogens with MICs of 2 mg/liter and with a dose of 750 mg/liter every 12 h for pathogens with MICs of 4 mg/liter. Because MICs are ≤2 mg/liter for most strains of MRSA, MRSE, and PRP (with some strains showing an MIC of 4 mg/liter), a dosing regimen of 750 mg every 12 h is proposed for clinical studies. The corresponding provisional breakpoint is S (susceptible) ≤ 4 mg/liter.
doi:10.1128/AAC.48.5.1713-1718.2004
PMCID: PMC400534  PMID: 15105125
10.  Antimicrobial and DNA Gyrase-Inhibitory Activities of Novel Clorobiocin Derivatives Produced by Mutasynthesis 
Twenty-eight novel clorobiocin derivatives obtained from mutasynthesis experiments were investigated for their inhibitory activity towards Escherichia coli DNA gyrase and for their antibacterial activities towards clinically relevant gram-positive and gram-negative bacteria in comparison to novobiocin and clorobiocin. Clorobiocin was the most active compound both against E. coli DNA gyrase in vitro and against bacterial growth. All tested modifications of the 3-dimethylallyl-4-hydroxybenzoyl moiety reduced biological activity. The highest activities were shown by compounds containing a hydrophobic alkyl substituent at position 3 of the 4-hydroxybenzoyl moiety. Polar groups in this side chain, especially amide functions, strongly reduced antibacterial activity. Replacement of the alkyl side chain with a halogen atom or a methoxy group at the same position markedly reduced activity. Transfer of the pyrrole carboxylic acid moiety from O-3" to O-2" of l-noviose moderately reduced activity, whereas the complete absence of the pyrrole carboxylic acid moiety led to a loss of activity. Desclorobiocin derivatives lacking the chlorine atom at C-8 of the 3-amino-4,7-dihydroxycoumarin moiety also showed low activity. Lack of a methyl group at O-4" of l-noviose resulted in an inactive compound. From these findings it appears that clorobiocin represents a “highly evolved” structure optimized for bacterial transport and DNA gyrase inhibition.
doi:10.1128/AAC.48.4.1307-1312.2004
PMCID: PMC375324  PMID: 15047534
11.  Mass Transport of Macromolecules within an In Vitro Model of Supragingival Plaque 
The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions.
doi:10.1128/AEM.69.3.1702-1709.2003
PMCID: PMC150054  PMID: 12620862

Results 1-11 (11)