Search tips
Search criteria

Results 1-25 (92)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  HLA Correlates of Long-Term Survival in Vertically Infected HIV-1-Positive Adolescents in Harare, Zimbabwe 
African infants with vertically acquired HIV infection progress rapidly, with only 50% surviving beyond 2 years in the absence of treatment. Despite this high initial mortality, recent reports describe a substantial burden of older children living with untreated vertically acquired HIV infection in Southern Africa. The immunological and genetic factors associated with long-term survival following vertical infection are poorly understood. We performed medium-to-high resolution HLA typing on DNA samples obtained from a cohort of presumed vertically HIV-1-infected children and age-matched uninfected controls in Harare, Zimbabwe. Overall, 93 HLA class I alleles were detected in the study population with a significant enrichment of HLA-C*08:02 and -C*08:04 in the HIV-1-infected long-term survivor group. Conversely, HLA-A*02:01, A*34:02, and -B*58:02 were overrepresented in the uninfected control group. Our data indicate that HLA alleles may have differential effects against HIV acquisition and disease progression in vertical HIV-1 infection.
PMCID: PMC4426308  PMID: 25560566
2.  Early Virological and Immunological Events in Asymptomatic Epstein-Barr Virus Infection in African Children 
PLoS Pathogens  2015;11(3):e1004746.
Epstein-Barr virus (EBV) infection often occurs in early childhood and is asymptomatic. However, if delayed until adolescence, primary infection may manifest as acute infectious mononucleosis (AIM), a febrile illness characterised by global CD8+ T-cell lymphocytosis, much of it reflecting a huge expansion of activated EBV-specific CD8+ T-cells. While the events of AIM have been intensely studied, little is known about how these relate to asymptomatic primary infection. Here Gambian children (14–18 months old, an age at which many acquire the virus) were followed for the ensuing six months, monitoring circulating EBV loads, antibody status against virus capsid antigen (VCA) and both total and virus-specific CD8+ T-cell numbers. Many children were IgG anti-VCA-positive and, though no longer IgM-positive, still retained high virus loads comparable to AIM patients and had detectable EBV-specific T-cells, some still expressing activation markers. Virus loads and the frequency/activation status of specific T-cells decreased over time, consistent with resolution of a relatively recent primary infection. Six children with similarly high EBV loads were IgM anti-VCA-positive, indicating very recent infection. In three of these donors with HLA types allowing MHC-tetramer analysis, highly activated EBV-specific T-cells were detectable in the blood with one individual epitope response reaching 15% of all CD8+ T-cells. That response was culled and the cells lost activation markers over time, just as seen in AIM. However, unlike AIM, these events occurred without marked expansion of total CD8+ numbers. Thus asymptomatic EBV infection in children elicits a virus-specific CD8+ T-cell response that can control the infection without over-expansion; conversely, in AIM it appears the CD8 over-expansion, rather than virus load per se, is the cause of disease symptoms.
Author Summary
Primary infection with EBV, a common human herpesvirus, is typically asymptomatic in childhood but, if occurring in adolescence or later, often presents as AIM. This febrile illness is characterised by high virus loads in the blood and an exaggerated EBV-specific CD8+ T-cell response that pushes total CD8+ T-cell numbers well above normal levels. By contrast, very little is known about the events of asymptomatic primary infection. We therefore studied young Gambian children at an age at which many acquire EBV, monitoring them over six months for evidence of EBV infection by virus load in the blood, virus-specific IgM and IgG antibody status, and virus-specific CD8+ T-cell responses. Focusing on IgM-positive children with very recent EBV infection but no history of symptoms, we found that they carried a virus load equivalent to that seen in AIM patients and also mounted a classical virus-specific CD8+ T-cell response. However, that response, though it could occupy at least 15% of the circulating CD8+ T-cell pool, occurred without the huge global expansion of CD8 numbers seen in AIM. This work reinforces the idea that the host’s exaggerated CD8+ T-cell response, rather than the virus load per se, leads to the symptoms of AIM.
PMCID: PMC4376400  PMID: 25816224
3.  Clinical Outcome of HIV Viraemic Controllers and Noncontrollers with Normal CD4 Counts Is Exclusively Determined by Antigen-Specific CD8+ T-Cell-Mediated HIV Suppression 
PLoS ONE  2015;10(3):e0118871.
In this cross-sectional study we evaluated T-cell responses using several assays to determine immune correlates of HIV control that distinguish untreated viraemic controllers (VC) from noncontrollers (NC) with similar CD4 counts. Samples were taken from 65 ART-naïve chronically HIV-infected VC and NC from Thailand with matching CD4 counts in the normal range (>450 cells/μl). We determined HIVp24-specific T-cell responses using standard Interferon-gamma (IFNγ) ELISpot assays, and compared the functional quality of HIVp24-specific CD8+ T-cell responses using polychromatic flow cytometry. Finally, in vitro HIV suppression assays were performed to evaluate directly the activity of CD8+ T cells in HIV control. Autologous CD4+ T cells were infected with primary patient-derived HIV isolates and the HIV suppressive activity of CD8+ T cells was determined after co-culture, measuring production of HIVp24 Ag by ELISA. The HIVp24-specific T-cell responses of VC and NC could not completely be differentiated through measurement of IFNγ-producing cells using ELISpot assays, nor by the absolute cell numbers of polyfunctional HIVp24-specific CD8+ T cells. However, in vitro HIV suppression assays showed clear differences between VC and NC. HIV suppressive activity, mediated by either ex vivo unstimulated CD8+ T cells or HIVp24-specific T-cell lines, was significantly greater using cells from VC than NC cells. Additionally, we were able to demonstrate a significant correlation between the level of HIV suppressive activity mediated by ex vivo unstimulated CD8+ T cells and plasma viral load (pVL) (Spearman r = -0.7345, p = 0.0003). This study provides evidence that in vitro HIV suppression assays are the most informative in the functional evaluation of CD8+ T-cell responses and can distinguish between VC and NC.
PMCID: PMC4357381  PMID: 25764310
4.  Timing of CD8+ T Cell Responses in Relation to Commencement of Capillary Leakage in Children with Dengue 
Immune activation is a feature of dengue hemorrhagic fever (DHF) and CD8+ T cell responses in particular have been suggested as having a role in the vasculopathy that characterizes this disease. By phenotyping CD8+ T cells (CD38+/HLA-DR+, CD38+/Ki-67+, or HLA-DR+/Ki-67+) in serial blood samples from children with dengue, we found no evidence of increased CD8+ T cell activation prior to the commencement of resolution of viremia or hemoconcentration. Investigations with MHC class I tetramers to detect NS3133–142-specific CD8+ T cells in two independent cohorts of children suggested the commencement of hemoconcentration and thrombocytopenia in DHF patients generally begins before the appearance of measurable frequencies of NS3133–142-specific CD8+ T cells. The temporal mismatch between the appearance of measurable surface activated or NS3133–142-specific CD8+ T cells suggests that these cells are sequestered at sites of infection, have phenotypes not detected by our approach, or that other mechanisms independent of CD8+ T cells are responsible for early triggering of capillary leakage in children with DHF.
PMCID: PMC4340505  PMID: 20483770
5.  Preservation of a critical epitope core region is associated with the high degree of flaviviral cross-reactivity exhibited by a dengue-specific CD4+ T cell clone 
European journal of immunology  2008;38(4):1050-1057.
Dengue is a member of the Flaviviridae, a large group of related viruses some of which co-circulate in certain regions (e.g. dengue and Yellow fever in South America). Immune responses cross-reactive between different dengue serotypes are important in the pathogenesis of dengue disease but it is not known whether previous infection with one flavivirus might affect the clinical course of subsequent infections with other members of the family. CD4+ T cells have been shown to be important in the production of cytokines in response to dengue infection and can demonstrate significant epitope cross-reactivity. Here, we describe the generation and characterisation of CD4+ T cell clones from a patient experiencing acute dengue infection. These clones were DRB1 *15+ and recognised epitope variants not only within other dengue viruses but certain other flaviviruses. This cross-reactivity was dependent upon the presence of a five-amino acid core region, consistent with structural observations of class II MHC binding to TCR demonstrating that only a subset of residues within an epitope bound to a class II molecule are “read out” by the TCR. This capacity of CD4+ T cell clones to recognise a given epitope despite considerable variation between viruses may be of pathological significance, particularly in regions where related viruses co-circulate.
PMCID: PMC4333208  PMID: 18383038
Dengue; Epitope; T cell
6.  How can we design better vaccines to prevent HIV infection in women? 
The human immunodeficiency virus (HIV) burden in women continues to increase, and heterosexual contact is now the most common route of infection worldwide. Effective protection of women against HIV-1 infection may require a vaccine specifically targeting mucosal immune responses in the female genital tract (FGT). To achieve this goal, a much better understanding of the immunology of the FGT is needed. Here we review the architecture of the immune system of the FGT, recent studies of potential methods to achieve the goal of mucosal protection in women, including systemic-prime, mucosal-boost, FGT-tropic vectors and immune response altering adjuvants. Advances in other fields that enhance our understanding of female genital immune correlates and the interplay between hormonal and immunological systems may also help to achieve protection of women from HIV infection.
PMCID: PMC4219488  PMID: 25408686
vaccines; HIV; women; genital tract; mucosal
7.  HIV-1 Subtype A Gag Variability and Epitope Evolution 
PLoS ONE  2014;9(6):e93415.
The aim of this study was to examine the course of time-dependent evolution of HIV-1 subtype A on a global level, especially with respect to the dynamics of immunogenic HIV gag epitopes.
We used a total of 1,893 HIV-1 subtype A gag sequences representing a timeline from 1985 through 2010, and 19 different countries in Africa, Europe and Asia. The phylogenetic relationship of subtype A gag and its epidemic dynamics was analysed through a Maximum Likelihood tree and Bayesian Skyline plot, genomic variability was measured in terms of G→A substitutions and Shannon entropy, and the time-dependent evolution of HIV subtype A gag epitopes was examined. Finally, to confirm observations on globally reported HIV subtype A sequences, we analysed the gag epitope data from our Kenyan, Pakistani, and Afghan cohorts, where both cohort-specific gene epitope variability and HLA restriction profiles of gag epitopes were examined.
The most recent common ancestor of the HIV subtype A epidemic was estimated to be 1956±1. A period of exponential growth began about 1980 and lasted for approximately 7 years, stabilized for 15 years, declined for 2–3 years, then stabilized again from about 2004. During the course of evolution, a gradual increase in genomic variability was observed that peaked in 2005–2010. We observed that the number of point mutations and novel epitopes in gag also peaked concurrently during 2005–2010.
It appears that as the HIV subtype A epidemic spread globally, changing population immunogenetic pressures may have played a role in steering immune-evolution of this subtype in new directions. This trend is apparent in the genomic variability and epitope diversity of HIV-1 subtype A gag sequences.
PMCID: PMC4043486  PMID: 24892852
8.  A Phase I Randomized Clinical Trial of Candidate Human Immunodeficiency Virus type 1 Vaccine MVA.HIVA Administered to Gambian Infants 
PLoS ONE  2013;8(10):e78289.
A vaccine to decrease transmission of human immunodeficiency virus type 1 (HIV-1) during breast-feeding would complement efforts to eliminate infant HIV-1 infection by antiretroviral therapy. Relative to adults, infants have distinct immune development, potentially high-risk of transmission when exposed to HIV-1 and rapid progression to AIDS when infected. To date, there have been only three published HIV-1 vaccine trials in infants.
Trial Design
We conducted a randomized phase I clinical trial PedVacc 001 assessing the feasibility, safety and immunogenicity of a single dose of candidate vaccine MVA.HIVA administered intramuscularly to 20-week-old infants born to HIV-1-negative mothers in The Gambia.
Infants were followed to 9 months of age with assessment of safety, immunogenicity and interference with Expanded Program on Immunization (EPI) vaccines. The trial is the first stage of developing more complex prime-boost vaccination strategies against breast milk transmission of HIV-1.
From March to October 2010, 48 infants (24 vaccine and 24 no-treatment) were enrolled with 100% retention. The MVA.HIVA vaccine was safe with no difference in adverse events between vaccinees and untreated infants. Two vaccine recipients (9%) and no controls had positive ex vivo interferon-γ ELISPOT assay responses. Antibody levels elicited to the EPI vaccines, which included diphtheria, tetanus, whole-cell pertussis, hepatitis B virus, Haemophilus influenzae type b and oral poliovirus, reached protective levels for the vast majority and were similar between the two arms.
A single low-dose of MVA.HIVA administered to 20-week-old infants in The Gambia was found to be safe and without interference with the induction of protective antibody levels by EPI vaccines, but did not alone induce sufficient HIV-1-specific responses. These data support the use of MVA carrying other transgenes as a boosting vector within more complex prime-boost vaccine strategies against transmission of HIV-1 and/or other infections in this age group.
Trial Registration NCT00982579
The Pan African Clinical Trials Registry PACTR2008120000904116
PMCID: PMC3813444  PMID: 24205185
9.  Breast milk cellular HIV-specific interferon γ responses are associated with protection from peripartum HIV transmission 
AIDS (London, England)  2012;26(16):2007-2016.
Breast milk is a major route of infant HIV infection, yet the majority of breast-fed, HIV-exposed infants escape infection by unknown mechanisms. This study aimed to investigate the role of HIV-specific breast milk cells in preventing infant HIV infection.
A prospective study was designed to measure associations between maternal breast milk HIV-specific interferon-γ (IFN-γ) responses and infant HIV-1 detection at 1 month of age.
In a Kenyan cohort of HIV-infected mothers, blood and breastmilk HIV-gag IFN-γ ELISpot responses were measured. Logistic regression was used to measure associations between breast milk IFN-γ responses and infant HIV infection at 1 month of age.
IFN-γ responses were detected in breast milk from 117 of 170 (69%) women. IFN-γ responses were associated with breast milk viral load, levels of macrophage inflammatory protein (MIP) 1α, MIP-1β, regulated upon activation, normal T-cell expressed, and secreted and stromal-cell derived factor 1 and subclinical mastitis. Univariate factors associated with infant HIV infection at 1 month postpartum included both detection and breadth of breast milk IFN-γ response (P =0.08, P =0.04, respectively), breast milk MIP-1β detection (P =0.05), and plasma (P =0.004) and breast milk (P =0.004) viral load. In multivariate analyses adjusting for breast milk viral load and MIP-1β, breast milk IFN-γ responses were associated with an approximately 70% reduction in infant HIV infection [adjusted odds ratio (aOR) 0.29, 95% confidence interval (CI) 0.092–0.91], and each additional peptide pool targeted was associated with an approximately 35% reduction in infant HIV (aOR 0.65, 95% CI 0.44–0.97).
These data show breast milk HIV-gag-specific IFN-γ cellular immune responses are prevalent and may contribute to protection from early HIV transmission. More broadly, these data suggest breast milk cellular responses are potentially influential in decreasing mother-to-child transmission of viruses.
PMCID: PMC3718292  PMID: 22948269
breastfeeding; breast milk cytotoxic T lymphocytes; cytokines; early postnatal transmission; infant; MIP-1β; pediatric; sub-Saharan Africa
11.  Epitope Mapping of Broadly Neutralizing HIV-2 Human Monoclonal Antibodies 
Journal of Virology  2012;86(22):12115-12128.
Recent studies have shown that natural infection by HIV-2 leads to the elicitation of high titers of broadly neutralizing antibodies (NAbs) against primary HIV-2 strains (T. I. de Silva, et al., J. Virol. 86:930–946, 2012; R. Kong, et al., J. Virol. 86:947–960, 2012; G. Ozkaya Sahin, et al., J. Virol. 86:961–971, 2012). Here, we describe the envelope (Env) binding and neutralization properties of 15 anti-HIV-2 human monoclonal antibodies (MAbs), 14 of which were newly generated from 9 chronically infected subjects. All 15 MAbs bound specifically to HIV-2 gp120 monomers and neutralized heterologous primary virus strains HIV-27312A and HIV-2ST. Ten of 15 MAbs neutralized a third heterologous primary virus strain, HIV-2UC1. The median 50% inhibitory concentrations (IC50s) for these MAbs were surprisingly low, ranging from 0.007 to 0.028 μg/ml. Competitive Env binding studies revealed three MAb competition groups: CG-I, CG-II, and CG-III. Using peptide scanning, site-directed mutagenesis, chimeric Env constructions, and single-cycle virus neutralization assays, we mapped the epitope of CG-I antibodies to a linear region in variable loop 3 (V3), the epitope of CG-II antibodies to a conformational region centered on the carboxy terminus of V4, and the epitope(s) of CG-III antibodies to conformational regions associated with CD4- and coreceptor-binding sites. HIV-2 Env is thus highly immunogenic in vivo and elicits antibodies having diverse epitope specificities, high potency, and wide breadth. In contrast to the HIV-1 Env trimer, which is generally well shielded from antibody binding and neutralization, HIV-2 is surprisingly vulnerable to broadly reactive NAbs. The availability of 15 human MAbs targeting diverse HIV-2 Env epitopes can facilitate comparative studies of HIV/SIV Env structure, function, antigenicity, and immunogenicity.
PMCID: PMC3486499  PMID: 22933274
12.  Acute Cytomegalovirus Infection Is Associated with Increased Frequencies of Activated and Apoptosis-Vulnerable T Cells in HIV-1-Infected Infants 
Journal of Virology  2012;86(20):11373-11379.
Cytomegalovirus (CMV) coinfection is associated with infant HIV-1 disease progression and mortality. In a cohort of Kenyan HIV-infected infants, the frequencies of activated (CD38+ HLA-DR+) and apoptosis-vulnerable (CD95+ Bcl-2−) CD4+ and CD8+ T cells increased substantially during acute CMV infection. The frequency of activated CD4+ T cells was strongly associated with both concurrent CMV coinfection (P = 0.001) and HIV-1 viral load (P = 0.05). The frequency of apoptosis-vulnerable cells was also associated with CMV coinfection in the CD4 (P = 0.02) and CD8 (P < 0.001) T cell subsets. Similar observations were made in HIV-exposed uninfected infants. CMV-induced increases in T cell activation and apoptosis may contribute to the rapid disease progression in coinfected infants.
PMCID: PMC3457128  PMID: 22875969
13.  Identification of H5N1-Specific T-Cell Responses in a High-risk Cohort in Vietnam Indicates the Existence of Potential Asymptomatic Infections 
Background. Most reported human H5N1 viral infections have been severe and were detected after hospital admission. A case ascertainment bias may therefore exist, with mild cases or asymptomatic infections going undetected. We sought evidence of mild or asymptomatic H5N1 infection by examining H5N1-specific T-cell and antibody responses in a high-risk cohort in Vietnam.
Methods. Peripheral blood mononuclear cells were tested using interferon-γ enzyme-linked immunospot T assays measuring the response to peptides of influenza H5, H3, and H1 hemagglutinin (HA), N1 and N2 neuraminidase, and the internal proteins of H3N2. Horse erythrocyte hemagglutination inhibition assay was performed to detect antibodies against H5N1.
Results. Twenty-four of 747 individuals demonstrated H5-specific T-cell responses but little or no cross-reactivity with H3 or H1 HA peptides. H5N1 peptide-specific T-cell lines that did not cross-react with H1 or H3 influenza virus HA peptides were generated. Four individuals also had antibodies against H5N1.
Conclusions. This is the first report of ex vivo H5 HA-specific T-cell responses in a healthy but H5N1-exposed population. Our results indicate that the presence of H5N1-specific T cells could be an additional diagnostic tool for asymptomatic H5N1 infection.
PMCID: PMC3242740  PMID: 22080094
14.  High frequency of HIV mutations associated with HLA-C suggests enhanced HLA-C-restricted CTL selective pressure associated with an AIDS-protective polymorphism 
Delayed HIV-1 disease progression is associated with a single nucleotide polymorphism upstream of the HLA-C gene that correlates with differential expression of the HLA-C antigen. This polymorphism was recently shown to be a marker for a protective variant in the 3′UTR of HLA-C that disrupts a microRNA binding site, resulting in enhanced HLA-C expression at the cell surface. Whether individuals with ‘high’ HLA-C expression show a stronger HLA-C-restricted immune response exerting better viral control than that of their counterparts has not been established. We hypothesised that the magnitude of the HLA-C-restricted immune pressure on HIV would be greater in subjects with highly expressed HLA-C alleles. Using a cohort derived from a unique narrow source epidemic in China, we identified mutations in HIV proviral DNA exclusively associated with HLA-C which were used as markers for the intensity of the immune pressure exerted on the virus. We found an increased frequency of mutations in individuals with highly expressed HLA-C alleles which also correlated with IFN-γ production by HLA-C-restricted CD8+ T-cells. These findings show that immune pressure on HIV is stronger in subjects with the protective genotype and highlights the potential role of HLA-C-restricted responses in HIV control. This is the first in vivo evidence supporting the protective role of HLA-C-restricted responses in non-Caucasians during HIV infection.
PMCID: PMC3378658  PMID: 22474021
15.  Efficient Nef-Mediated Downmodulation of TCR-CD3 and CD28 Is Associated with High CD4+ T Cell Counts in Viremic HIV-2 Infection 
Journal of Virology  2012;86(9):4906-4920.
The role of the multifunctional accessory Nef protein in the immunopathogenesis of HIV-2 infection is currently poorly understood. Here, we performed comprehensive functional analyses of 50 nef genes from 21 viremic (plasma viral load, >500 copies/ml) and 16 nonviremic (<500) HIV-2-infected individuals. On average, nef alleles from both groups were equally active in modulating CD4, TCR-CD3, CD28, MHC-I, and Ii cell surface expression and in enhancing virion infectivity. Thus, many HIV-2-infected individuals efficiently control the virus in spite of efficient Nef function. However, the potency of nef alleles in downmodulating TCR-CD3 and CD28 to suppress the activation and apoptosis of T cells correlated with high numbers of CD4+ T cells in viremic patients. No such correlations were observed in HIV-2-infected individuals with undetectable viral load. Further functional analyses showed that the Nef-mediated downmodulation of TCR-CD3 suppressed the induction of Fas, Fas-L, PD-1, and CTLA-4 cell surface expression as well as the secretion of gamma interferon (IFN-γ) by primary CD4+ T cells. Moreover, we identified a single naturally occurring amino acid variation (I132T) in the core domain of HIV-2 Nef that selectively disrupts its ability to downmodulate TCR-CD3 and results in functional properties highly reminiscent of HIV-1 Nef proteins. Taken together, our data suggest that the efficient Nef-mediated downmodulation of TCR-CD3 and CD28 help viremic HIV-2-infected individuals to maintain normal CD4+ T cell homeostasis by preventing T cell activation and by suppressing the induction of death receptors that may affect the functionality and survival of both virally infected and uninfected bystander cells.
PMCID: PMC3347365  PMID: 22345473
17.  Are Plasma Biomarkers of Immune Activation Predictive of HIV Progression: A Longitudinal Comparison and Analyses in HIV-1 and HIV-2 Infections? 
PLoS ONE  2012;7(9):e44411.
Chronic immune activation is a hallmark of HIV infection and has been associated with disease progression. Assessment of soluble biomarkers indicating immune activation provide clues into pathogenesis and hold promise for the development of point-of-care monitoring of HIV in resource-poor-settings. Their evaluation in cohort resources is therefore needed to further their development and use in HIV research.
Methodology/Principal Findings
Longitudinal evaluation of βeta-2 microglobulin (β-2 m), neopterin and suPAR soluble urokinase-type plasminogen activator receptor (suPAR) was performed with archived plasma samples to predict disease progression and provided the first direct comparison of levels in HIV-1 and HIV-2 infections. At least 2095 samples from 137 HIV-1 and 198 HIV-2 subjects with starting CD4% of ≥28 and median follow up of 4 years were analysed. All biomarkers were correlated negatively to CD4% and positively to viral load and to each other. Analyses in subjects living for ≥5 years revealed increases in median β-2 m and neopterin and decreases in CD4% over this period and the odds of death within 5 years were positively associated with baseline levels of β-2 m and neopterin. ROC analyses strengthened the evidence of elevation of biomarkers in patients approaching death in both HIV-1 and HIV-2 infections. Regression models showed that rates of biomarker fold change accelerated from 6–8 years before death with no significant differences between biomarker levels in HIV-1 and HIV-2 at equal time points prior to death.An ‘immune activation index’ analysis indicative of biomarker levels at equivalent viral loads also showed no differences between the two infections.
Our results suggest that β-2 m and neopterin are useful tools for disease monitoring in both HIV-1 and HIV-2 infections, whereas sUPAR performed less well. Levels of immune activation per amount of virus were comparable in HIV-1 and HIV-2 infected subjects.
PMCID: PMC3438191  PMID: 22970212
18.  Functional Differences Exist between TNFα Promoters Encoding the Common −237G SNP and the Rarer HLA-B*5701-Linked A Variant 
PLoS ONE  2012;7(7):e40100.
A large body of functional and epidemiological evidence have previously illustrated the impact of specific MHC class I subtypes on clinical outcome during HIV-1 infection, and these observations have recently been re-iterated in genome wide association studies (GWAS). Yet because of the complexities surrounding GWAS-based approaches and the lack of knowledge relating to the identity of rarer single nucleotide polymorphism (SNP) variants, it has proved difficult to discover independent causal variants associated with favourable immune control. This is especially true of the candidate variants within the HLA region where many of the recently proposed disease influencing SNPs appear to reflect linkage with ‘protective’ MHC class I alleles. Yet causal MHC-linked SNPs may exist but remain overlooked owing to the complexities associated with their identification. Here we focus on the ancestral TNFα promoter −237A variant (rs361525), shown historically to be in complete linkage disequilibrium with the ‘protective’ HLA-B*5701 allele. Many of the ancestral SNPs within the extended TNFα promoter have been associated with both autoimmune conditions and disease outcomes, however, the direct role of these variants on TNFα expression remains controversial. Yet, because of the important role played by TNFα in HIV-1 infection, and given the proximity of the −237 SNP to the core promoter, its location within a putative repressor region previously characterized in mice, and its disruption of a methylation-susceptible CpG dinucleotide motif, we chose to carefully evaluate its impact on TNFα production. Using a variety of approaches we now demonstrate that carriage of the A SNP is associated with lower TNFα production, via a mechanism not readily explained by promoter methylation nor the binding of transcription factors or repressors. We propose that the −237A variant could represent a minor causal SNP that additionally contributes to the HLA-B*5701-mediated ‘protective’ effect during HIV-1 infection.
PMCID: PMC3396654  PMID: 22808100
19.  Potent Autologous and Heterologous Neutralizing Antibody Responses Occur in HIV-2 Infection across a Broad Range of Infection Outcomes 
Journal of Virology  2012;86(2):930-946.
Few studies have explored the role of neutralizing antibody (NAb) responses in controlling HIV-2 viremia and disease progression. Using a TZM-bl neutralization assay, we assessed heterologous and autologous NAb responses from a community cohort of HIV-2-infected individuals with a broad range of disease outcomes in rural Guinea-Bissau. All subjects (n = 40) displayed exceptionally high heterologous NAb titers (50% inhibitory plasma dilution or 50% inhibitory concentration [IC50], 1:7,000 to 1:1,000,000) against 5 novel primary HIV-2 envelopes and HIV-2 7312A, whereas ROD A and 3 primary envelopes were relatively resistant to neutralization. Most individuals also showed high autologous NAb against contemporaneous envelopes (78% of plasma-envelope combinations in 69 envelopes from 21 subjects), with IC50s above 1:10,000. No association between heterologous or autologous NAb titer and greater control of HIV-2 was found. A subset of envelopes was found to be more resistant to neutralization (by plasma and HIV-2 monoclonal antibodies). These envelopes were isolated from individuals with greater intrapatient sequence diversity and were associated with changes in potential N-linked glycosylation sites but not CD4 independence or CXCR4 use. Plasma collected from up to 15 years previously was able to potently neutralize recent autologous envelopes, suggesting a lack of escape from NAb and the persistence of neutralization-sensitive variants over time, despite significant NAb pressure. We conclude that despite the presence of broad and potent NAb responses in HIV-2-infected individuals, these are not the primary forces behind the dichotomous outcomes observed but reveal a limited capacity for adaptive selection and escape from host immunity in HIV-2 infection.
PMCID: PMC3255814  PMID: 22072758
20.  Modified vaccinia Ankara expressing HIVA antigen stimulates HIV-1-specific CD8 T cells in ELISpot assays of HIV-1 exposed infants☆ 
Vaccine  2005;23(38):4711-4719.
Recombinant modified vaccinia virus Ankara expressing HIV-1 antigens (MVA.HIVA) was used in ELISpot assays to monitor HIV-1-specific T cell responses in infants. Responses to MVA.HIVA and HIV-1 peptides were examined in 13 infected and 81 exposed uninfected infants in Nairobi, Kenya. Responses to MVA.HIVA (38%) and peptide stimulation (38%) were similar in frequency (p = 1.0) and magnitude (mean 176 versus 385 HIVSFU/106, p = 0.96) in HIV-1 infected infants. In exposed uninfected infants, MVA.HIVA detected more positive responses and higher magnitude responses as compared to peptide. MVA.HIVA ELISpot is a sensitive method for quantification of HIV-1-specific CD8+ T cell responses in HIV-1 exposed infants. These results demonstrate the relevance of HIV-1 clade A consensus-derived immunogen HIVA for the viruses currently circulating in Nairobi.
PMCID: PMC3382083  PMID: 16043269
Enzyme-linked immunospot assay; Exposed seronegatives; Mother to child transmission
21.  Human Leukocyte Antigen (HLA) B*18 and Protection against Mother-to-Child HIV Type 1 Transmission 
Human leukocyte antigen (HLA) molecules regulate the cellular immune system and may be determinants of infant susceptibility to human immunodeficiency virus type 1 (HIV-1) infection. Molecular HLA typing for class I alleles was performed on infants followed in a Kenyan perinatal cohort. Early HIV-1 infection status was defined as infection occurring at birth or month 1, while late infection via breast milk was defined as first detection of HIV-1 after 1 month of age. Likelihood ratio tests based on a proportional hazards model adjusting for maternal CD4 T cell count and HIV-1 viral load at 32 weeks of gestation were used to test associations between infant allelic variation and incident HIV-1 infection. Among 433 infants, 76 (18%) were HIV-1 infected during 12 months of follow-up. HLA B*18 was associated with a significantly lower risk of early HIV-1 transmission [relative risk (RR) = 0.26; 95% confidence interval (CI) 0.04–0.82], and none of the 24 breastfeeding infants expressing HLA B*18 who were uninfected at month 1 acquired HIV-1 late via breast milk. We observed a trend toward increased early HIV-1 acquisition for infants presenting HLA A*29 (RR = 2.0; 95% CI 1.0–3.8) and increased late HIV-1 acquisition via breast milk for both Cw*07 and Cw*08 (RR = 4.0; 95% CI 1.0–17.8 and RR = 7.2; 95% CI 1.2–37.3, respectively). HLA B*18 may protect breast-feeding infants against both early and late HIV-1 acquisition, a finding that could have implications for the design and monitoring of HIV-1 vaccines targeting cellular immune responses against HIV-1.
PMCID: PMC3380108  PMID: 15307911
22.  Immune Reconstitution Inflammatory Syndrome and the Influence of T Regulatory Cells: A Cohort Study in the Gambia 
PLoS ONE  2012;7(6):e39213.
The factors associated with the development of immune reconstitution inflammatory syndrome in HIV patients commencing antiretroviral therapy have not been fully elucidated. Using a longitudinal study design, this study addressed whether alteration in the levels of T regulatory cells contributed to the development of IRIS in a West African cohort of HIV-1 and HIV-2 patients. Seventy-one HIV infected patients were prospectively recruited to the study and followed up for six months. The patients were categorized as IRIS or non-IRIS cases following published clinical guidelines. The levels of T regulatory cells were measured using flow cytometry at baseline and all follow-up visits. Baseline cytokine levels of IL-2, IL-6, IFN-γ, TNF-α, MIP-1β, IL-1, IL-12, IL-13, and IL-10 were measured in all patients.
Twenty eight percent of patients (20/71) developed IRIS and were predominantly infected with HIV-1. Patients developing IRIS had lower nadir CD4 T cells at baseline (p = 0.03) and greater CD4 T cell reconstitution (p = 0.01) at six months post-ART. However, the development of IRIS was not influenced by the levels of T regulatory cells. Similarly, baseline cytokine levels did not predict the onset of IRIS.
The development of IRIS was not associated with differences in levels of T regulatory cells or baseline pro-inflammatory cytokines.
PMCID: PMC3380048  PMID: 22745716
23.  CCR5 Promoter Polymorphisms in a Kenyan Perinatal Human Immunodeficiency Virus Type 1 Cohort: Association with Increased 2-Year Maternal Mortality 
The CCR5 chemokine receptor acts as a coreceptor with CD4 to permit infection by primary macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains. The CCR5Δ32 mutation, which is associated with resistance to infection in homozygous individuals and delayed disease progression in heterozygous individuals, is rare in Africa, where the HIV-1 epidemic is growing rapidly. Several polymorphisms in the promoter region of CCR5 have been identified, the clinical and functional relevance of which remain poorly defined. We evaluated the effect of 4 CCR5 promoter mutations on systemic and mucosal HIV-1 replication, disease progression, and perinatal transmission in a cohort of 276 HIV-1–seropositive women in Nairobi, Kenya. Mutations at positions 59353, 59402, and 59029 were not associated with effects on mortality, virus load, genital shedding, or transmission in this cohort. However, women with the 59356 C/T genotype had a 3.1-fold increased risk of death during the 2-year follow-up period (95% confidence interval [CI], 1.0–9.5) and a significant increase in vaginal shedding of HIV-1–infected cells (odds ratio, 2.1; 95% CI, 1.0–4.3), compared with women with the 59356 C/C genotype.
PMCID: PMC3366112  PMID: 11398114
24.  Clinical predictors cannot replace biological predictors in HIV-2 infection in a community setting in West Africa 
To identify clinical predictors of mortality in HIV-2-infected individuals that may be used in place of CD4 count or plasma viral load (PVL) to guide treatment management in resource-limited settings.
A prospective community cohort study of HIV-infected and HIV-negative individuals in a rural area of Guinea-Bissau has been ongoing since 1989. In 2003 participants were invited for a clinical examination and blood tests. They were followed-up for vital status until 2010. Antiretroviral treatment (ART) became available in 2007. Cox regression was used to examine the association of clinical measures (World Health Organization (WHO) stage, body mass index (BMI), mid-upper arm circumference (MUAC), and WHO performance scale) measured in 2003 with subsequent mortality.
In 2003, 146 HIV-2-infected individuals (68% women; mean age 56 years) were examined. Over the next 7 years, 44 (30%) died. BMI < 18.5 kg/m2 was associated with a crude mortality hazard ratio (HR) of 1.9 (95% confidence interval (CI) 1.0–3.9, p = 0.08); adjusted for age and sex, HR 1.8 (95% CI 0.9–3.8, p = 0.1). MUAC <230 mm in women and <240 mm in men was also associated with an elevated mortality HR, though statistical evidence was weak (crude HR 2.2, 95% CI 0.9–5.3, p = 0.1). WHO clinical stage and WHO performance scale were not associated with mortality (p = 0.6 and p = 0.2, respectively, for crude associations).
Baseline BMI, MUAC, WHO stage, and WHO performance scale were not strong or statistically significant predictors of mortality among HIV-2-infected individuals. CD4 count and PVL are more reliable tools, when available, for the management of HIV-2-infected patients in the community setting.
PMCID: PMC3324712  PMID: 22387142
HIV-2; Africa; Body mass index; Mortality; Cohort
25.  Immunological impact of an additional early measles vaccine in Gambian children: Responses to a boost at 3 years 
Vaccine  2012;30(15):2543-2550.
► Gambian infants were given one or two doses of measles vaccine. ► The kinetics of the immune response was compared after a boost. ► Antibody responses were equally rapid and high. ► Cell mediated responses were insignificantly different. ► Antibody concentrations decayed quicker in the two dose group.
Measles vaccine in early infancy followed by a dose at 9 months of age protects against measles and enhances child survival through non-specific effects. Little is known of immune responses in the short or long term after booster doses.
Infants were randomized to receive measles vaccine at 9 months of age (group 1) or 4 and 9 months of age (group 2). Both groups received a boost at 36 months of age. T-cell effector and memory responses using IFN-γ ELIspot and cytokine assays and antibody titres using a haemagglutination-inhibition assay were compared at various times.
Vaccination at 4 months of age elicited antibody and CD4 T-cell mediated immune responses .Two weeks after vaccination at 9 months of age group 2 had much higher antibody titres than group1 infants; cell-mediated effector responses were similar. At 36 months of age group 2 antibody titres exceeded protective levels but were 4-fold lower than group 1; effector and cytokine responses were similar. Re-vaccination resulted in similar rapid and high antibody titres in both groups (median 512); cellular immunity changed little. At 48 months of age group 2 antibody concentrations remained well above protective levels though 2-fold lower than group 1; T-cell memory was readily detectable and similar in both groups.
An additional early measles vaccine given to children at 4 months of age induced a predominant CD4 T-cell response at 9 months and rapid development of high antibody concentrations after booster doses. However, antibody decayed faster in these children than in the group given primary vaccination at 9 months of age. Cellular responses after 9 months were generally insignificantly different.
PMCID: PMC3401374  PMID: 22314136
Measles vaccine; Two-dose schedule; Booster dose; Antibody; Cellular immunity

Results 1-25 (92)