PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (37)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  HIV-1 Genetic Variability and Clinical Implications 
ISRN Microbiology  2013;2013:481314.
Despite advances in antiretroviral therapy that have revolutionized HIV disease management, effective control of the HIV infection pandemic remains elusive. Beyond the classic non-B endemic areas, HIV-1 non-B subtype infections are sharply increasing in previous subtype B homogeneous areas such as Europe and North America. As already known, several studies have shown that, among non-B subtypes, subtypes C and D were found to be more aggressive in terms of disease progression. Luckily, the response to antiretrovirals against HIV-1 seems to be similar among different subtypes, but these results are mainly based on small or poorly designed studies. On the other hand, differences in rates of acquisition of resistance among non-B subtypes are already being observed. This different propensity, beyond the type of treatment regimens used, as well as access to viral load testing in non-B endemic areas seems to be due to HIV-1 clade specific peculiarities. Indeed, some non-B subtypes are proved to be more prone to develop resistance compared to B subtype. This phenomenon can be related to the presence of subtype-specific polymorphisms, different codon usage, and/or subtype-specific RNA templates. This review aims to provide a complete picture of HIV-1 genetic diversity and its implications for HIV-1 disease spread, effectiveness of therapies, and drug resistance development.
doi:10.1155/2013/481314
PMCID: PMC3703378  PMID: 23844315
2.  Potential implications of CYP3A4, CYP3A5 and MDR-1 genetic variants on the efficacy of Lopinavir/Ritonavir (LPV/r) monotherapy in HIV-1 patients 
Journal of the International AIDS Society  2014;17(4Suppl 3):19589.
Introduction
Several genetic single nucleotide polymorphisms (SNPs) in biotransformation enzymes (CYP3A4, CYP3A5) or transporter proteins (multidrug resistance MDR1 gene product, P-gp) are involved in PI metabolism so that PI pharmacokinetics is characterized by a large inter-individual variability. The aim of this study was: (i) to develop an in-house PCR/direct sequencing, based on DNA purification of full-length CYP3A4 and CYP3A5 genes (SNPs) and MDR1 C3435T variant; (ii) to investigate association of CYP3A4 and CYP3A5 reported or unreported genetic polymorphisms and MDR1-C3435T (CC homozygote, CT heterozygote, TT homozygote) with clinical outcome of HIV-1 infected subjects treated with PI.
Methods
Overall, 39 HIV-1 infected patients receiving boosted Lopinavir (LPV/r) monotherapy after virological suppression were genotyped and analyzed through PCR and direct sequencing of full-length CYP3A4 and CYP3A5 gene sequences [1] and MDR1 gene (C3435T). CD4+T-cell counts and plasma viral load were analyzed before and after LPV/r initiation; LPV/r therapeutic drug monitoring (TDM) was determined at 12-hours.
Results
LPV/r TDM (ng/ml) did not show significant differences among CYP3A4 or CYP3A5 SNPs, although a mean lower level of LPV/r was associated with detection of several SNPs: CYP3A5*3 rs776746; CYP3A5 rs28365088, CYP3A5 rs15524, CYP3A4 rs2687116, and a not already described polymorphism CYP3A4 nt20338. In follow-up analysis, <90% adherence was the main factor associated with virological failure of LPV/r monotherapy (83.3% of failure vs 34.4%, p<0.001 at log-rank test). Adjusting for adherence, the detection of a single CYP3A5*3 rs776746 and CYP3A5 rs15524 SNPs was associated with higher probability of LPV/r monotherapy failure (p<0.01), and in general, detection of any CYP3A5 SNP was associated with failure (26.2% vs 58.3%, p=0.067). No-association with detection of any CYP3A4 SNPs was found. MDR1 TT variants showed significant lower frequency of treatment failure (0.0% vs 47.7%, p=0.026), since non-TT homozygote patient failed LPV/r monotherapy.
Conclusions
Efficacy of PI monotherapy is strongly dependent from patient adherence, but, in adherent patients, genetic factors, such as CYP3A5 and MDR1-C3435T gene variants, may affect the response to treatment, though their role, as well of other genetic variants, need further investigation.
doi:10.7448/IAS.17.4.19589
PMCID: PMC4224892  PMID: 25394094
3.  A Very Low Geno2pheno False Positive Rate Is Associated with Poor Viro-Immunological Response in Drug-Naïve Patients Starting a First-Line HAART 
PLoS ONE  2014;9(8):e105853.
Background
We previously found that a very low geno2pheno false positive rate (FPR ≤2%) defines a viral population associated with low CD4 cell count and the highest amount of X4-quasispecies. In this study, we aimed at evaluating whether FPR ≤2% might impact on the viro-immunological response in HIV-1 infected patients starting a first-line HAART.
Methods
The analysis was performed on 305 HIV-1 B subtype infected drug-naïve patients who started their first-line HAART. Baseline FPR (%) values were stratified according to the following ranges: ≤2; 2–5; 5–10; 10–20; 20–60; >60. The impact of genotypically-inferred tropism on the time to achieve immunological reconstitution (a CD4 cell count gain from HAART initiation ≥150 cells/mm3) and on the time to achieve virological success (the first HIV-RNA measurement <50 copies/mL from HAART initiation) was evaluated by survival analyses.
Results
Overall, at therapy start, 27% of patients had FPR ≤10 (6%, FPR ≤2; 7%, FPR 2–5; 14%, FPR 5–10). By 12 months of therapy the rate of immunological reconstitution was overall 75.5%, and it was significantly lower for FPR ≤2 (54.1%) in comparison to other FPR ranks (78.8%, FPR 2–5; 77.5%, FPR 5–10; 71.7%, FPR 10–20; 81.8%, FPR 20–60; 75.1%, FPR >60; p = 0.008). The overall proportion of patients achieving virological success was 95.5% by 12 months of therapy. Multivariable Cox analyses showed that patients having pre-HAART FPR ≤2% had a significant lower relative adjusted hazard [95% C.I.] both to achieve immunological reconstitution (0.37 [0.20–0.71], p = 0.003) and to achieve virological success (0.50 [0.26–0.94], p = 0.031) than those with pre-HAART FPR >60%.
Conclusions
Beyond the genotypically-inferred tropism determination, FPR ≤2% predicts both a poor immunological reconstitution and a lower virological response in drug-naïve patients who started their first-line therapy. This parameter could be useful to identify patients potentially with less chance of achieving adequate immunological reconstitution and virological undetectability.
doi:10.1371/journal.pone.0105853
PMCID: PMC4143365  PMID: 25153969
4.  Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: potential implications for the metabolism of HIV drugs 
BMC Medical Genetics  2014;15:76.
Background
Drug metabolism via the cytochrome P450 (CYP450) system has emerged as an important determinant in the occurrence of several drug interactions (adverse drug reactions, reduced pharmacological effect, drug toxicities). In particular, CYP3A4 and CYP3A5 (interacting with more than 60% of licensed drugs) exhibit the most individual variations of gene expression, mostly caused by single nucleotide polymorphisms (SNPs) within the regulatory region of the CYP3A4 and CYP3A5 genes which might affect the level of enzyme production.
In this study, we sought to improve the performance of sensitive screening for CYP3A polymorphism detection in twenty HIV-1 infected patients undergoing lopinavir/ritonavir (LPV/r) monotherapy.
Methods
The study was performed by an effective, easy and inexpensive home-made Polymerase Chain Reaction Direct Sequencing approach for analyzing CYP3A4 and CYP3A5 genes which can detect both reported and unreported genetic variants potentially associated with altered or decreased functions of CYP3A4 and CYP3A5 proteins. Proportions and tests of association were used.
Results
Among the genetic variants considered, CYP3A4*1B (expression of altered function) was only found in 3 patients (15%) and CYP3A5*3 (expression of splicing defect) in 3 other patients (15%). CYP3A5*3 did not appear to be associated with decreased efficacy of LPV/r in any patient, since none of the patients carrying this variant showed virological rebound during LPV/r treatment or low levels of TDM. In contrast, low-level virological rebound was observed in one patient and a low TDM level was found in another; both were carrying CYP3A4*1B.
Conclusions
Our method exhibited an overall efficiency of 100% (DNA amplification and sequencing in our group of patients). This may contribute to producing innovative results for better understanding the inter-genotypic variability in gene coding for CYP3A, and investigating SNPs as biological markers of individual response to drugs requiring metabolism via the cytochrome P450 system.
doi:10.1186/1471-2350-15-76
PMCID: PMC4083125  PMID: 24986243
Polymorphisms; Variability; Pharmacogenetics; Cytocrome P450
5.  Detecting and understanding genetic and structural features in HIV-1 B subtype V3 underlying HIV-1 co-receptor usage 
Bioinformatics  2013;29(4):451-460.
Motivation: To define V3 genetic elements and structural features underlying different HIV-1 co-receptor usage in vivo.
Results: By probabilistically modeling mutations in the viruses isolated from HIV-1 B subtype patients, we present a unique statistical procedure that would first identify V3 determinants associated with the usage of different co-receptors cooperatively or independently, and then delineate the complicated interactions among mutations functioning cooperatively. We built a model based on dual usage of CXCR4 and CCR5 co-receptors. The molecular basis of our statistical predictions is further confirmed by phenotypic and molecular modeling analyses. Our results provide new insights on molecular basis of different HIV-1 co-receptor usage. This is critical to optimize the use of genotypic tropism testing in clinical practice and to obtain molecular-implication for design of vaccine and new entry-inhibitors.
Contact: jing.zhang.jz349@yale.edu or cf.perno@uniroma2.it
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt002
PMCID: PMC3570207  PMID: 23297034
6.  Comparative Analysis of Drug Resistance Among B and the Most Prevalent Non-B HIV Type 1 Subtypes (C, F, and CRF02_AG) in Italy 
AIDS Research and Human Retroviruses  2012;28(10):1285-1293.
Abstract
In recent years, increasing numbers of patients infected with HIV-1 non-B subtypes have been treated with modern antiretroviral regimens. Therefore, a better knowledge of HIV drug resistance in non-B strains is crucial. Thus, we compared the mutational pathways involved in drug resistance among the most common non-B subtypes in Italy (F, C, and CRF02_AG) and the B subtype. In total, 2234 pol sequences from 1231 virologically failing patients from Central Italy were analyzed. The prevalence of resistance mutations in protease and reverse transcriptase between non-B and B subtypes has been evaluated. Among patients treated with nucleoside/nucleotide reverse transcriptase inhibitors (NRTI) and with thymidine analogues (TA) experience, TAMs1 M41L and L210W were less prevalent in CRF02_AG, while TAMs2 T215F and K219E were more prevalent in the F subtype. In NRTI-treated patients having experience with abacavir, didanosine, tenofovir, or stavudine the K65R mutation was mostly prevalent in the C subtype. In non-NRTI (NNRTI)-treated patients infected by the C subtype the prevalence of K103N was lower than in patients infected with other subtypes, while the prevalence of Y181C and Y188L was higher compared to subtype B. The prevalence of Y181C was higher also in subtype F as compared to subtype B. In patients treated with protease inhibitors, L89V was predominantly found in CRF02_AG, while the TPV resistance mutation T74P was predominantly found in the C subtype. Some differences in the genotypic drug resistance have been found among patients infected with B, C, F, and CRF02_AG subtypes in relationship to treatment. These results may be useful for the therapeutic management of individuals infected with HIV-1 non-B strains.
doi:10.1089/aid.2011.0142
PMCID: PMC3448092  PMID: 22417570
7.  HIV-1 drug resistance in recently HIV-infected pregnant mother’s naïve to antiretroviral therapy in Dodoma urban, Tanzania 
BMC Infectious Diseases  2013;13:439.
Background
HIV resistance affects virological response to therapy and efficacy of prophylaxis in mother-to-child-transmission. The study aims to assess the prevalence of HIV primary resistance in pregnant women naïve to antiretrovirals.
Methods
Cross sectional baseline analysis of a cohort of HIV + pregnant women (HPW) enrolled in the study entitled Antiretroviral Management of Antenatal and Natal HIV Infection (AMANI, peace in Kiswahili language). The AMANI study began in May 2010 in Dodoma, Tanzania. In this observational cohort, antiretroviral treatment was provided to all women from the 28th week of gestation until the end of the breastfeeding period. Baseline CD4 cell count, viral load and HIV drug-resistance genotype were collected.
Results
Drug-resistance analysis was performed on 97 naïve infected-mothers. The prevalence of all primary drug resistance and primary non-nucleoside reverse-transcriptase inhibitors resistance was 11.9% and 7.5%, respectively. K103S was found in two women with no M184V detection. HIV-1 subtype A was the most commonly identified, with a high prevalence of subtype A1, followed by C, D, C/D recombinant, A/C recombinant and A/D recombinant. HIV drug- resistance mutations were detected in A1 and C subtypes.
Conclusion
Our study reports an 11.9% prevalence rate of primary drug resistance in naïve HIV-infected pregnant women from a remote area of Tanzania. Considering that the non-nucleoside reverse-transcriptase inhibitors are part of the first-line antiretroviral regimen in Tanzania and all of Africa, resistance surveys should be prioritized in settings where antiretroviral therapy programs are scaled up.
doi:10.1186/1471-2334-13-439
PMCID: PMC3849050  PMID: 24053581
HIV-drug resistance; MTCT; HIV-genotype; Low-resources countries
8.  A Multi-targeted Drug Candidate with Dual Anti-HIV and Anti-HSV Activity 
PLoS Pathogens  2013;9(7):e1003456.
Human immunodeficiency virus (HIV) infection is often accompanied by infection with other pathogens, in particular herpes simplex virus type 2 (HSV-2). The resulting coinfection is involved in a vicious circle of mutual facilitations. Therefore, an important task is to develop a compound that is highly potent against both viruses to suppress their transmission and replication. Here, we report on the discovery of such a compound, designated PMEO-DAPym. We compared its properties with those of the structurally related and clinically used acyclic nucleoside phosphonates (ANPs) tenofovir and adefovir. We demonstrated the potent anti-HIV and -HSV activity of this drug in a diverse set of clinically relevant in vitro, ex vivo, and in vivo systems including (i) CD4+ T-lymphocyte (CEM) cell cultures, (ii) embryonic lung (HEL) cell cultures, (iii) organotypic epithelial raft cultures of primary human keratinocytes (PHKs), (iv) primary human monocyte/macrophage (M/M) cell cultures, (v) human ex vivo lymphoid tissue, and (vi) athymic nude mice. Upon conversion to its diphosphate metabolite, PMEO-DAPym markedly inhibits both HIV-1 reverse transcriptase (RT) and HSV DNA polymerase. However, in striking contrast to tenofovir and adefovir, it also acts as an efficient immunomodulator, inducing β-chemokines in PBMC cultures, in particular the CCR5 agonists MIP-1β, MIP-1α and RANTES but not the CXCR4 agonist SDF-1, without the need to be intracellularly metabolized. Such specific β-chemokine upregulation required new mRNA synthesis. The upregulation of β-chemokines was shown to be associated with a pronounced downmodulation of the HIV-1 coreceptor CCR5 which may result in prevention of HIV entry. PMEO-DAPym belongs conceptually to a new class of efficient multitargeted antivirals for concomitant dual-viral (HSV/HIV) infection therapy through inhibition of virus-specific pathways (i.e. the viral polymerases) and HIV transmission prevention through interference with host pathways (i.e. CCR5 receptor down regulation).
Author Summary
To contain the HIV-1 epidemic, it is necessary to develop antivirals that prevent HIV-1 transmission. It is well known that HIV infection might be accompanied by other pathogens, which often are engaged with HIV-1 in a vicious circle of mutual facilitation. One of the most common of these pathogens is herpes simplex virus (HSV) type 2. Since there is an urgent need for a next generation antivirals that are multi-targeted, we can now report on the development of the first antiviral of this new generation that efficiently suppresses both HIV-1 and HSV-2. We found that the dual-targeted antiviral drug affects several targets for viral replication. It uniquely combines in one molecule three important abilities: (i) to efficiently suppress HSV-encoded DNA polymerase, (ii) to efficiently suppress HIV-1-encoded reverse transcriptase, and (iii) to stimulate secretion of CC-chemokines that downregulate the HIV-1 coreceptor CCR5. The compound suppresses both viruses in a wide-range of in vitro, ex vivo, and in vivo experimental models. The ability of one molecule to suppress HIV-1 and HSV-2 by combining direct activity against their two key enzymes and indirect immunomodulatory effects is unique in the antiviral field.
doi:10.1371/journal.ppat.1003456
PMCID: PMC3723632  PMID: 23935482
9.  Inhibition of Dual/Mixed Tropic HIV-1 Isolates by CCR5-Inhibitors in Primary Lymphocytes and Macrophages 
PLoS ONE  2013;8(7):e68076.
Background
Dual/mixed-tropic HIV-1 strains are predominant in a significant proportion of patients, though little information is available regarding their replication-capacity and susceptibility against CCR5-antagonists in-vitro. The aim of the study was to analyze the replication-capacity and susceptibility to maraviroc of HIV-1 clinical isolates with different tropism characteristics in primary monocyte-derived-macrophages (MDM), peripheral-blood-mononuclear-cells (PBMC), and CD4+T-lymphocytes.
Methods
Twenty-three HIV-1 isolates were phenotipically and genotipically characterized as R5, X4 or dual (discriminated as R5+/X4, R5/X4, R5/X4+). Phenotypic-tropism was evaluated by multiple-cycles-assay on U87MG-CD4+-CCR5+−/CXCR4+-expressing cells. Genotypic-tropism prediction was obtained using Geno2Pheno-algorithm (false-positive-rate [FPR] = 10%). Replication-capacity and susceptibility to maraviroc were investigated in human-primary MDM, PBMC and CD4+T-cells. AMD3100 was used as CXCR4-inhibitor. Infectivity of R5/Dual/X4-viruses in presence/absence of maraviroc was assessed also by total HIV-DNA, quantified by real-time polymerase-chain-reaction.
Results
Among 23 HIV-1 clinical isolates, phenotypic-tropism-assay distinguished 4, 17 and 2 viruses with R5-tropic, dual/mixed-, and X4-tropic characteristics, respectively. Overall, viruses defined as R5+/X4-tropic were found with the highest prevalence (10/23, 43.5%). The majority of isolates efficiently replicated in both PBMC and CD4+T-cells, regardless of their tropism, while MDM mainly sustained replication of R5- or R5+/X4-tropic isolates; strong correlation between viral-replication and genotypic-FPR-values was observed in MDM (rho = 0.710;p-value = 1.4e-4). In all primary cells, maraviroc inhibited viral-replication of isolates not only with pure R5- but also with dual/mixed tropism (mainly R5+/X4 and, to a lesser extent R5/X4 and R5/X4+). Finally, no main differences by comparing the total HIV-DNA with the p24-production in presence/absence of maraviroc were found.
Conclusions
Maraviroc is effective in-vitro against viruses with dual-characteristics in both MDM and lymphocytes, despite the potential X4-mediated escape. This suggests that the concept of HIV-entry through one of the two coreceptors “separately” may require revision, and that the use of CCR5-antagonists in patients with dual/mixed-tropic viruses may be a therapeutic-option that deserves further investigations in different clinical settings.
doi:10.1371/journal.pone.0068076
PMCID: PMC3706609  PMID: 23874501
10.  Study of Genotypic and Phenotypic HIV-1 Dynamics of Integrase Mutations During Raltegravir Treatment: A Refined Analysis by Ultra-Deep 454 Pyrosequencing 
The Journal of Infectious Diseases  2012;205(4):557-567.
Background. The dynamics of raltegravir-resistant variants and their impact on virologic response in 23 HIV-1–infected patients, who started a salvage raltegravir-containing regimen, were investigated.
Methods. Integrase population sequencing and Ultra-Deep-454 Pyrosequencing (UDPS) were performed on plasma samples at baseline and at raltegravir failure. All integrase mutations detected at a frequency ≥1% were considered to be reliable for the UDPS analyses. Phylogenetic and phenotypic resistance analyses were also performed.
Results. At baseline, primary resistance mutations were not detected by both population and UDPS genotypic assays; few secondary mutations (T97A-V151I-G163R) were rarely detected and did not show any statistically association either with virologic response at 24-weeks or with the development of resistant variants at failure. At UDPS, not all resistant variants appearing early during treatment evolved as major populations during failure; only specific resistance pathways (Y143R-Q148H/R-N155H) associated with an increased rate of fitness and phenotypic resistance were selected.
Conclusions. Resistance to raltegravir in integrase strand transfer inhibitor–naive patients remains today a rare event, which might be changed by future extensive use of such drugs. In our study, pathways of resistance at failure were not predicted by baseline mutations, suggesting that evolution plus stochastic selection plays a major role in the appearance of integrase-resistance mutations, whereas fitness and resistance are dominant factors acting for the late selection of resistant quasispecies.
doi:10.1093/infdis/jir821
PMCID: PMC3266134  PMID: 22238474
11.  Description of the L76V Resistance Protease Mutation in HIV-1 B and “Non-B” Subtypes 
PLoS ONE  2013;8(1):e54381.
Objective
To describe the prevalence of the L76V protease inhibitors resistance-associated mutation (PI-RAM) in relation with patients’ characteristics and protease genotypic background in HIV-1 B- and “non-B”-infected patients.
Methods
Frequency of the L76V mutation between 1998 and 2010 was surveyed in the laboratory database of 3 clinical centers. Major PI-RAMs were identified according to the IAS-USA list. Fisher’s and Wilcoxon tests were used to compare variables.
Results
Among the overall 29,643 sequences analyzed, the prevalence of L76V was 1.50%, while was 5.42% in PI-resistant viruses. Since 2008 the prevalence of L76V was higher in “non-B”-infected than in B-infected patients each year. Median time since diagnosis of HIV-1 infection and median time under antiretroviral-based regimen were both shorter in “non-B”- than in B-infected patients (8 vs 11 years, P<0.0001; and 7 vs 8 years, P = 0.004). In addition, “non-B”-infected patients had been pre-exposed to a lower number of PI (2 vs 3, P = 0.016). The L76V was also associated with a lower number of major PI-RAMs in “non-B” vs B samples (3 vs 4, P = 0.0001), and thus it was more frequent found as single major PI-RAM in “non-B” vs B subtype (10% vs 2%, P = 0.014).
Conclusions
We showed an impact of viral subtype on the selection of the L76V major PI-RAM with a higher prevalence in “non-B” subtypes observed since 2008. In addition, in “non-B”-infected patients this mutation appeared more rapidly and was associated with less PI-RAM.
doi:10.1371/journal.pone.0054381
PMCID: PMC3548776  PMID: 23349869
12.  The Genotypic False Positive Rate Determined by V3 Population Sequencing Can Predict the Burden of HIV-1 CXCR4-using Species Detected by Pyrosequencing 
PLoS ONE  2013;8(1):e53603.
Objective
The false-positive rate (FPR) is a percentage-score provided by Geno2Pheno-algorithm indicating the likelihood that a V3-sequence is falsely predicted as CXCR4-using. We evaluated the correlation between FPR obtained by V3 population-sequencing and the burden of CXCR4-using variants detected by V3 ultra-deep sequencing (UDPS) and Enhanced-Sensitivity Trofile assay (ESTA).
Methods
54 HIV-1 B-subtype infected-patients (all maraviroc-naïve), with viremia >10,000copies/ml, were analyzed. HIV-tropism was assessed by V3 population-sequencing, UDPS (considering variants with >0.5% prevalence), and ESTA.
Results
By UDPS, CCR5-using variants were detected in 53/54 patients, irrespective of FPR values, and their intra-patient prevalence progressively increased by increasing the FPR obtained by V3 population-sequencing (rho = 0.75, p = 5.0e-8). Conversely, the intra-patient prevalence of CXCR4-using variants in the 54 patients analyzed progressively decreased by increasing the FPR (rho = −0.61; p = 9.3e-6). Indeed, no CXCR4-using variants were detected in 13/13 patients with FPR>60. They were present in 7/18 (38.8%) patients with FPR 20–60 (intra-patient prevalence range: 2.1%–18.4%), in 5/7 (71.4%) with FPR 10–20, in 4/6 (66.7%) with FPR 5–10, and in 10/10(100%) with FPR<5 (intra-patient prevalence range: 12.1%–98.1%).
Conclusions
FPR by V3 population-sequencing can predict the burden of CXCR4-using variants. This information can be used to optimize the management of tropism determination in clinical practice. Due to its low cost and short turnaround time, V3 population-sequencing may represent the most feasible test for HIV-1 tropism determination. More sensitive methodologies (as UDPS) might be useful when V3 population-sequencing provides a FPR >20 (particularly in the range 20–60), allowing a more careful identification of patients harboring CXCR4-using variants.
doi:10.1371/journal.pone.0053603
PMCID: PMC3544916  PMID: 23341955
13.  Molecular Epidemiology of HIV Type 1 CRF02_AG in Cameroon and African Patients Living in Italy 
AIDS Research and Human Retroviruses  2011;27(11):1173-1182.
Abstract
HIV-1 CRF02_AG accounts for >50% of infected individuals in Cameroon. CRF02_AG prevalence has been increasing both in Africa and Europe, particularly in Italy because of migrations from the sub-Saharan region. This study investigated the molecular epidemiology of CRF02_AG in Cameroon by employing Bayesian phylodynamics and analyzed the relationship between HIV-1 CRF02_AG isolates circulating in Italy and those prevalent in Africa to understand the link between the two epidemics. Among 291 Cameroonian reverse transcriptase sequences analyzed, about 70% clustered within three distinct clades, two of which shared a most recent common ancestor, all related to sequences from Western Africa. The major Cameroonian clades emerged during the mid-1970s and slowly spread during the next 30 years. Little or no geographic structure was detected within these clades. One of the major driving forces of the epidemic was likely the high accessibility between locations in Southern Cameroon contributing to the mobility of the population. The remaining Cameroonian sequences and the new strains isolated from Italian patients were interspersed mainly within West and Central African sequences in the tree, indicating a continuous exchange of CRF02_AG viral strains between Cameroon and other African countries, as well as multiple independent introductions in the Italian population. The evaluation of the spread of CRF02_AG may provide significant insight about the future dynamics of the Italian and European epidemic.
doi:10.1089/aid.2010.0333
PMCID: PMC3206741  PMID: 21453131
14.  TOPICAL TENOFOVIR, A MICROBICIDE EFFECTIVE AGAINST HIV, INHIBITS HERPES SIMPLEX VIRUS-2 REPLICATION 
Cell host & microbe  2011;10(4):379-389.
SUMMARY
The HIV reverse transcriptase inhibitor tenofovir, was recently formulated into a vaginal gel for use as a microbicide. In human trials, a 1% tenofovir gel inhibited HIV sexual transmission by 39% and surprisingly herpes simplex virus-2 (HSV-2) transmission by 51%. We demonstrate that the concentration achieved intravaginally with a 1% tenofovir topical gel has direct anti-herpetic activity. Tenofovir inhibits the replication of HSV clinical isolates in human embryonic fibroblasts, keratinocytes, and organotypic epithelial 3D-rafts, decreases HSV replication in human lymphoid and cervical tissues ex vivo, and delays HSV-induced lesions and death of topically treated HSV-infected mice. The active tenofovir metabolite inhibits HSV DNA-polymerase and HIV reverse transcriptase. Tenofovir must be topically administered to achieve concentrations, which are higher than systemic levels after oral treatment, that exert these dual antiviral effects. These findings indicate that a single topical treatment, like tenofovir, can inhibit the transmission of HIV and its co-pathogens.
doi:10.1016/j.chom.2011.08.015
PMCID: PMC3201796  PMID: 22018238
15.  HCV Genotypes Are Differently Prone to the Development of Resistance to Linear and Macrocyclic Protease Inhibitors 
PLoS ONE  2012;7(7):e39652.
Background
Because of the extreme genetic variability of hepatitis C virus (HCV), we analyzed whether specific HCV-genotypes are differently prone to develop resistance to linear and macrocyclic protease-inhibitors (PIs).
Methods
The study includes 1568 NS3-protease sequences, isolated from PI-naive patients infected with HCV-genotypes 1a (N = 621), 1b (N = 474), 2 (N = 72), 3 (N = 268), 4 (N = 54) 5 (N = 6), and 6 (N = 73). Genetic-barrier was calculated as the sum of nucleotide-transitions (score = 1) and/or nucleotide-transversions (score = 2.5) required for drug-resistance-mutations emergence. Forty-three mutations associated with PIs-resistance were analyzed (36A/M/L/G-41R-43S/V-54A/S/V-55A-Q80K/R/L/H/G-109K-138T-155K/Q/T/I/M/S/G/L-156T/V/G/S-158I-168A/H/T/V/E/I/G/N/Y-170A/T-175L). Structural analyses on NS3-protease and on putative RNA-models have been also performed.
Results
Overall, NS3-protease was moderately conserved, with 85/181 (47.0%) amino-acids showing <1% variability. The catalytic-triad (H57-D81-S139) and 6/13 resistance-associated positions (Q41-F43-R109-R155-A156-V158) were fully conserved (variability <1%). Structural-analysis highlighted that most of the NS3-residues involved in drug-stabilization were highly conserved, while 7 PI-resistance residues, together with selected residues located in proximity of the PI-binding pocket, were highly variable among HCV-genotypes. Four resistance-mutations (80K/G-36L-175L) were found as natural polymorphisms in selected genotypes (80K present in 41.6% HCV-1a, 100% of HCV-5 and 20.6% HCV-6; 80G present in 94.4% HCV-2; 36L present in 100% HCV-3-5 and >94% HCV-2-4; 175L present in 100% HCV-1a-3-5 and >97% HCV-2-4). Furthermore, HCV-3 specifically showed non-conservative polymorphisms (R123T-D168Q) at two drug-interacting positions. Regardless of HCV-genotype, 13 PIs resistance-mutations were associated with low genetic-barrier, requiring only 1 nucleotide-substitution (41R-43S/V-54A-55A-80R-156V/T: score = 1; 54S-138T-156S/G-168E/H: score = 2.5). By contrast, by using HCV-1b as reference genotype, nucleotide-heterogeneity led to a lower genetic-barrier for the development of some drug-resistance-mutations in HCV-1a (36M-155G/I/K/M/S/T-170T), HCV-2 (36M-80K-155G/I/K/S/T-170T), HCV-3 (155G/I/K/M/S/T-170T), HCV-4-6 (155I/S/L), and HCV-5 (80G-155G/I/K/M/S/T).
Conclusions
The high degree of HCV genetic variability makes HCV-genotypes, and even subtypes, differently prone to the development of PIs resistance-mutations. Overall, this can account for different responsiveness of HCV-genotypes to PIs, with important clinical implications in tailoring individualized and appropriate regimens.
doi:10.1371/journal.pone.0039652
PMCID: PMC3391197  PMID: 22792183
16.  The HR2 polymorphism N140I in the HIV-1 gp41 combined with the HR1 V38A mutation is associated with a less cytopathic phenotype 
Retrovirology  2012;9:15.
Background
Resistance to the fusion inhibitor enfuvirtide (ENF) is achieved by changes in the gp41 subunit of the HIV envelope glycoprotein (Env). Specific ENF-associated mutational pathways correlate with immunological recovery, even after virological failure, suggesting that the acquisition of ENF resistance alters gp41 pathogenicity. To test this hypothesis, we have characterized the expression, fusion capability, induction of CD4+ T cell loss and single CD4+ T cell death of 48 gp41 proteins derived from three patients displaying different amino acids (N, T or I) at position 140 that developed a V38A mutation after ENF-based treatment.
Results
In all cases, intra-patient comparison of Env isolated pre- or post-treatment showed comparable values of expression and fusogenic capacity. Furthermore, Env with either N or T at position 140 induced comparable losses of CD4+ T-cells, irrespective of the residue present at position 38. Conversely, Env acquiring the V38A mutation in a 140I background induced a significantly reduced loss of CD4+ T cells and lower single-cell death than did their baseline controls. No altered ability to induce single-cell death was observed in the other clones.
Conclusions
Overall, primary gp41 proteins with both V38A and N140I changes showed a reduced ability to induce single cell death and deplete CD4+ T cells, despite maintaining fusion activity. The specificity of this phenotype highlights the relevance of the genetic context to the cytopathic capacity of Env and the role of ENF-resistance mutations in modulating viral pathogenicity in vivo, further supporting the hypothesis that gp41 is a critical mediator of HIV pathogenesis.
doi:10.1186/1742-4690-9-15
PMCID: PMC3312827  PMID: 22333046
HIV; gp41; enfuvirtide; single cell death; fusogenicity
17.  Selected amino acid mutations in HIV-1 B subtype gp41 are Associated with Specific gp120V3 signatures in the regulation of Co-Receptor usage 
Retrovirology  2011;8:33.
Background
The third variable loop (V3) of the HIV-1 gp120 surface protein is a major determinant of cellular co-receptor binding. However, HIV-1 can also modulate its tropism through other regions in gp120, such as V1, V2 and C4 regions, as well as in the gp41 protein. Moreover, specific changes in gp41 are likely to be responsible for of damage in gp120-CCR5 interactions, resulting in potential resistance to CCR5 inhibitors.
In order to genetically characterize the two envelope viral proteins in terms of co-receptor usage, we have analyzed 526 full-length env sequences derived from HIV-1 subtype-B infected individuals, from our and public (Los Alamos) databases. The co-receptor usage was predicted by the analysis of V3 sequences using Geno2Pheno (G2P) algorithm. The binomial correlation phi coefficient was used to assess covariation among gp120V3 and gp41 mutations; subsequently the average linkage hierarchical agglomerative clustering was performed.
Results
According to G2P false positive rate (FPR) values, among 526 env-sequences analyzed, we further characterized 196 sequences: 105 with FPR <5% and 91 with FPR >70%, for X4-using and R5-using viruses, respectively.
Beyond the classical signatures at 11/25 V3 positions (S11S and E25D, R5-tropic viruses; S11KR and E25KRQ, X4-tropic viruses), other specific V3 and gp41 mutations were found statistically associated with the co-receptor usage. Almost all of these specific gp41 positions are exposed on the surface of the glycoprotein. By the covariation analysis, we found several statistically significant associations between V3 and gp41 mutations, especially in the context of CXCR4 viruses. The topology of the dendrogram showed the existence of a cluster associated with R5-usage involving E25DV3, S11SV3, T22AV3, S129DQgp41 and A96Ngp41 signatures (bootstrap = 0.88). Conversely, a large cluster was found associated with X4-usage involving T8IV3, S11KRV3, F20IVYV3, G24EKRV3, E25KRV3, Q32KRV3, A30Tgp41, A189Sgp41, N195Kgp41 and L210Pgp41 mutations (bootstrap = 0.84).
Conclusions
Our results show that gp120V3 and several specific amino acid changes in gp41 are associated together with CXCR4 and/or CCR5 usage. These findings implement previous observations that determinants of tropism may reside outside the V3-loop, even in the gp41. Further studies will be needed to confirm the degree to which these gp41 mutations contribute directly to co-receptor use.
doi:10.1186/1742-4690-8-33
PMCID: PMC3117778  PMID: 21569409
18.  Secondary Integrase Resistance Mutations Found in HIV-1 Minority Quasispecies in Integrase Therapy-Naive Patients Have Little or No Effect on Susceptibility to Integrase Inhibitors▿  
The goal of this study was to explore the presence of integrase strand transfer inhibitor (InSTI) resistance mutations in HIV-1 quasispecies present in InSTI-naïve patients and to evaluate their in vitro effects on phenotypic susceptibility to InSTIs and their replication capacities. The RT-RNase H-IN region was PCR amplified from plasma viral RNA obtained from 49 HIV-1 subtype B-infected patients (21 drug naïve and 28 failing highly active antiretroviral therapy [HAART] not containing InSTIs) and recombined with an HXB2-based backbone with RT and IN deleted. Recombinant viruses were tested against raltegravir and elvitegravir and for replication capacity. Three-hundred forty-four recombinant viruses from 49 patients were successfully analyzed both phenotypically and genotypically. The majority of clones were not phenotypically resistant to InSTIs: 0/344 clones showed raltegravir resistance, and only 3 (0.87%) showed low-level elvitegravir resistance. No primary resistance mutations for raltegravir and elvitegravir were found as major or minor species. The majority of secondary mutations were also absent or rarely present. Secondary mutations, such as T97A and G140S, found rarely and only as minority quasispecies, were present in the elvitegravir-resistant clones. A novel mutation, E92G, although rarely found in minority quasispecies, showed elvitegravir resistance. Preexisting genotypic and phenotypic raltegravir resistance was extremely rare in InSTI-naïve patients and confined to only a restricted minority of secondary variants. Overall, these results, together with others based on population and ultradeep sequencing, suggest that at this point IN genotyping in all patients before raltegravir treatment may not be cost-effective and should not be recommended until evidence of transmitted drug resistance to InSTIs or the clinical relevance of IN minor variants/polymorphisms is determined.
doi:10.1128/AAC.01720-09
PMCID: PMC2935022  PMID: 20479206
19.  Phylogenesis and Clinical Aspects of Pandemic 2009 Influenza A (H1N1) Virus Infection 
During the spring of 2009, a new influenza A (H1N1) virus of swine origin emerged and spread worldwide causing a pandemic influenza. Here, 329 naso-pharyngeal swabs collected from patients with flu-like symptoms were analyzed by real-time PCR for the presence of H1N1 2009 pandemic virus. Twenty-five samples collected from immunocompetent and immunodepressed patients contained the H1N1 pandemic virus. Phylogenetic analysis of the hemagglutinin and neuraminidase genes showed no obvious differences in terms of similarity and/or homology between the sequences identified in immunocompetent individuals and those obtained from immunocompromised patients. Pre-existing clinical conditions may influence the outcome of H1N1 disease.
doi:10.2174/1874357901105010022
PMCID: PMC3109524  PMID: 21660186
H1N1 pandemic virus; swine flu; respiratory infections; phylogenetic analysis; influenza surface antigens.
20.  KI and WU Polyomaviruses and CD4+ Cell Counts in HIV-1–infected Patients, Italy 
Emerging Infectious Diseases  2010;16(9):1482-1485.
To investigate an association between KI and WU polyomavirus (KIPyV and WUPyV) infections and CD4+ cell counts, we tested HIV-1–positive patients and blood donors. No association was found between cell counts and virus infections in HIV-1–positive patients. Frequency of KIPyV infection was similar for both groups. WUPyV was more frequent in HIV-1–positive patients.
doi:10.3201/eid1609.100211
PMCID: PMC3294973  PMID: 20735940
HIV-1; KI polyomavirus; WU polyomavirus; KIPyV; WUPyV; viruses; CD4+ cell counts; Italy; dispatch
21.  Effect of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Polymorphism Leu-214 on Replication Capacity and Drug Susceptibility▿  
Journal of Virology  2009;83(15):7434-7439.
A negative association between polymorphism Leu-214 and type-1 thymidine analogue mutations (TAM1) and a positive association with a clinically favorable virological response to thymidine analogue-based combination antiretroviral therapy have been described. In this study, the impact of Leu-214 on replication capacity and resistance to zidovudine (ZDV) of viruses containing TAM1 or TAM2 was determined. Leu-214 decreased the growth rate of viruses bearing Tyr-215, as well as their resistance to ZDV. This observation was confirmed by structural and molecular modeling data, suggesting a regulatory role for Leu-214 in the emergence and phenotypic resistance of TAM1.
doi:10.1128/JVI.00487-09
PMCID: PMC2708641  PMID: 19457988
22.  Treatment with the Fusion Inhibitor Enfuvirtide Influences the Appearance of Mutations in the Human Immunodeficiency Virus Type 1 Regulatory Protein Rev▿  
The gp41-encoding sequence of the env gene contains in two separate regions the Rev-responsive elements (RRE) and the alternative open reading frame of the second exon of the regulatory protein Rev. The binding of Rev to the RRE allows the transport of unspliced/singly spliced viral mRNAs out of the nucleus, an essential step in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this study, we have investigated whether the fusion-inhibitor enfuvirtide (ENF) can induce mutations in Rev and if these mutations correlate with the classical ENF resistance gp41 mutations and with viremia and CD4 cell count. Specific Rev mutations were positively associated with ENF treatment and significantly correlated with classical ENF resistance gp41 mutations. In particular, a cluster was observed for the Rev mutations E57A (E57Arev) and N86Srev with the ENF resistance gp41 mutations Q40H (Q40Hgp41) and L45Mgp41. In addition, the presence at week 48 of the E57Arev correlates with a significant viremia increase from baseline to week 48 and with a CD4 cell count loss from baseline to week 48. By modeling the RRE structure, we found that the Q40gp41 and L45gp41 codons form complementary base pairs in a region of the RRE involved in Rev binding. The conformation of this Rev-binding site is disrupted when Q40Hgp41 and L45Mgp41 occur alone while it is restored when both mutations are present. In conclusion, our study shows that ENF pressure may also affect both Rev and RRE structures and can provide an excellent example of compensatory evolution. This highlights the multiple roles of ENF (and perhaps other entry inhibitors) in modulating the correct interplay between the different HIV-1 genes and proteins during the HIV-1 life cycle.
doi:10.1128/AAC.01067-08
PMCID: PMC2704662  PMID: 19124665
23.  Short Communication: Characterization of Drug-Resistance Mutations in HIV Type 1 Isolates from Drug-Naive and ARV-Treated Patients in Bulgaria 
AIDS Research and Human Retroviruses  2008;24(9):1133-1138.
Abstract
Little information is available about the prevalence of resistance mutations to reverse transcriptase (RT) and protease (PR) inhibitors of HIV-1, after the introduction of antiretroviral treatment in Bulgaria. To fill this gap, we analyzed 80 plasma samples from HIV-1-infected Bulgarian patients, 22 naive at antiretroviral treatment (ARV) and 58 ARV experienced. The subtypes B and A resulted in the two most prevalent (41 patients and 18 patients, respectively). The proportion of subtype B among naive and treated patients was similar in each group (57% vs. 47%, p = 0.62), while a major proportion of subtypes A was present in drug-naive patients rather than in treated patients [8/22 (36.4%) vs. 10/58 (17.2%), p = 0.08]. Two (9.1%) naive patients and 40 (70.1%) drug-experienced patients had viruses carrying at least one mutation conferring resistance to ARV drugs. Of 57 patients having experience with nucleoside reverse transcriptase inhibitors (NRTI), 32 (56.1%) had NRTI resistance mutations; 8/14 (57.2%) patients having experience with non-NRTI (NNRTI) had viruses carrying NNRTI resistance mutations; and 21/46 (45.7%) patients having experience with protease inhibitors (PI) had PI resistance mutations. The commonest resistance mutations resulted in the NRTI mutation M184V (42.1%) and the PI mutation L90M (24.1%). In conclusion, due to the detection of the substantial transmission of resistant variants to newly infected individuals, continuous surveillance is required, since greater access to highly active antiretroviral therapy (HAART) will be expected in Bulgaria. Furthermore, surveillance of PR and RT sequences is also convenient to monitor the introduction of nonsubtype B HIV-1 strains in Bulgaria.
doi:10.1089/aid.2008.0042
PMCID: PMC2928031  PMID: 18788909
24.  KI and WU Polyomaviruses in Patients Infected with HIV-1, Italy 
Emerging Infectious Diseases  2009;15(8):1323-1325.
doi:10.3201/eid1508.090424
PMCID: PMC2815986  PMID: 19751608
Viruses; polyomavirus; HIV-1; Italy; letter
25.  Characterization of the patterns of drug-resistance mutations in newly diagnosed HIV-1 infected patients naïve to the antiretroviral drugs 
Background
The transmission of HIV-1 drug-resistant strains in drug naive patients may seriously compromise the efficacy of a first-line antiretroviral treatment. To better define this problem, a study in a cohort of newly diagnosed HIV-1 infected individuals has been conducted. This study is aimed to assess the prevalence and the patterns of the mutations recently associated with transmitted drug resistance in the reverse transcriptase (RT) and in protease (PR) of HIV-1.
Methods
Prevalence of transmitted drug resistant strains is determined in 255 newly diagnosed HIV-1 infected patients enrolled in different counselling and testing (CT) centres in Central Italy; the Avidity Index (AI) on the first available serum sample is also used to estimate time since infection. Logistic regression models are used to determine factors associated with infection by drug resistant HIV-1 strains.
Results
The prevalence of HIV-1 strains with at least one major drug resistance mutation is 5.9% (15/255); moreover, 3.9% (10/255) of patients is infected with HIV nucleoside reverse transcriptase inhibitor (NRTI)-resistant viruses, 3.5% (9/255) with HIV non-NRTI-resistant viruses and 0.4% (1/255) with HIV protease inhibitor (PI)-resistant viruses. Most importantly, almost half (60.0%) of patients carries HIV-1 resistant strains with more than one major drug resistance mutation. In addition, patients who had acquired HIV through homosexual intercourses are more likely to harbour a virus with at least one primary resistance mutation (OR 7.7; 95% CI: 1.7–35.0, P = 0.008).
Conclusion
The prevalence of drug resistant HIV-1 strains among newly diagnosed individuals in Central Italy is consistent with the data from other European countries. Nevertheless, the presence of drug-resistance HIV-1 mutations in complex patterns highlights an additional potential risk for public health and strongly supports the extension of wide genotyping to newly diagnosed HIV-1 infected patients.
doi:10.1186/1471-2334-9-111
PMCID: PMC2725045  PMID: 19607681

Results 1-25 (37)