PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Titration of an SIVmac251 Stock by Vaginal Inoculation of Indian and Chinese Origin Rhesus Macaques: Transmission Efficiency, Viral Loads, and Antibody Responses 
AIDS Research and Human Retroviruses  2001;17(15):1455-1466.
The purpose of this study was to determine whether rhesus monkeys of Chinese origin are suitable for studies of mucosal lentivirus transmission by comparing the relative ability of these animals and rhesus macaques of Indian origin to become infected by vaginal (IVAG) inoculation with SIVmac251. In addition, we sought to test the hypothesis that differences in viral load during the first few weeks after inoculation were due to the relative strength of the anti-SIV immune responses in the two populations of rhesus macaques. Significant difference was not observed between the number of Indian and Chinese origin monkeys that were infected after IVAG SIV inoculation in this study. For 8–9 weeks after infection there was considerable overlap in the range of viral loads among the Indian and Chinese animals and the variation among the Indian origin animals was greater than the variation among the Chinese origin monkeys. By 6 weeks postinfection, viral loads in SIV-infected Chinese origin monkeys tended to be at the lower end of the range of viral loads observed in SIV-infected Indian origin monkeys. The strength of the anti-SIV antibody response was also more variable in the Indian origin rhesus macaques, but at 6–8 weeks postinfection, Chinese and Indian origin rhesus macaques had similar titers of anti-SIV antibodies. Microsatellite allele frequencies differed between Chinese and Indian rhesus macaques; however, the majority of alleles present in Indian-origin animals were also found in Chinese macaques. Together these results show that host factors, other than geographic origin, determine the ability of a rhesus macaque to be infected after IVAG SIV exposure and that geographic origin does not predict the viral load of SIV-infected animals during the first 8–9 weeks after IVAG inoculation.
doi:10.1089/088922201753197123
PMCID: PMC3401017  PMID: 11679158
2.  Immunogenetic Management Software: a new tool for visualization and analysis of complex immunogenetic datasets 
Immunogenetics  2011;64(4):329-336.
Here we describe the Immunogenetic Management Software (IMS) system, a novel web-based application that permitsmultiplexed analysis of complex immunogenetic traits that are necessary for the accurate planning and execution of experiments involving large animal models, including nonhuman primates. IMS is capable of housing complex pedigree relationships, microsatellite-based MHC typing data, as well as MHC pyrosequencing expression analysis of class I alleles. It includes a novel, automated MHC haplotype naming algorithm and has accomplished an innovative visualization protocol that allows users to view multiple familial and MHC haplotype relationships through a single, interactive graphical interface. Detailed DNA and RNA-based data can also be queried and analyzed in a highly accessible fashion, and flexible search capabilities allow experimental choices to be made based on multiple, individualized and expandable immunogenetic factors. This web application is implemented in Java, MySQL, Tomcat, and Apache, with supported browsers including Internet Explorer and Firefox onWindows and Safari on Mac OS. The software is freely available for distribution to noncommercial users by contacting Leslie. kean@emory.edu. A demonstration site for the software is available at http://typing.emory.edu/typing_demo, user name: imsdemo7@gmail.com and password: imsdemo.
doi:10.1007/s00251-011-0587-8
PMCID: PMC3514553  PMID: 22080300
Genetics; Visualization; Web services; Next-generation sequencing; MHC

Results 1-2 (2)