Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mucosal Blood Group Antigen Expression Profiles and HIV Infections: A Study among Female Sex Workers in Kenya 
PLoS ONE  2015;10(7):e0133049.
The ABO blood group antigens are carbohydrate moieties expressed on human red blood cells however; these antigens can also be expressed on some other cells particularly the surface of epithelial cells and may be found in mucosal secretions. In many human populations 80% secrete ABO antigens (termed ‘secretors’) while 20% do not (termed ‘non-secretors’). Furthermore, there are disease conditions that are associated with secretor status.
To investigate correlations between secretor status and HIV infection among female sex workers in Nairobi, Kenya.
This cross-sectional study recruited 280 female sex workers aged 18–65 years from the Pumwani Majengo cohort, Kenya. Blood typing was determined by serological techniques using monoclonal antibodies to the ABO blood group antigens. Secretor phenotyping was determined using anti-H specific lectins specific to salivary, vaginal and cervical blood group H antigen using the agglutination inhibition technique and correlated to individual HIV sero-status. Participants were additionally screened for Bacterial vaginosis, Neisseria gonorrhoea and Trichomonas vaginalis.
Out of the 280 participants, 212 (75.7%) were secretors and 68 (24.3%) were non-secretors. The incidence of all infections: HIV, Bacterial vaginosis, Neisseria gonorrhoea and Trichomonas vaginalis was higher among secretors compared to non-secretors. However, this difference was only statistically significant for HIV infection incidence rates: HIV infected secretors (83.7%) versus HIV un-infected secretors (71.8%) (p = 0.029) Based on ABO phenotype stratification, the incidence of HIV infection was higher among blood group A secretors (26/52 = 50%), in comparison to B (12/39 = 33.3%: p = 0.066), AB (3/9 = 33.3%: p = 0.355), and O secretors (36/112 = 32.1%: p = 0.028).
This is the first report to document the variable expression of the ABH blood group antigens profiling secretor and non-secretor phenotypes in the female genital tract among a high-risk population in a Kenyan population. These findings suggest the non-secretor phenotype may confer a certain degree of protection against HIV infection.
PMCID: PMC4505875  PMID: 26186209
2.  Effects of HIV-1 infection on malaria parasitemia in milo sub-location, western Kenya 
BMC Research Notes  2015;8:303.
Malaria and HIV infections are both highly prevalent in sub-Saharan Africa, with HIV-infected patients being at higher risk of acquiring malaria. HIV-1 infection is known to impair the immune response and may increase the incidence of clinical malaria. However, a positive association between HIV-1 and malaria parasitaemia is still evolving. Equally, the effect of malaria on HIV-1 disease stage has not been well established, but when fever and parasitemia are high, malaria may be associated with transient increases in HIV-1 viral load, and progression of HIV-1 asymptomatic disease phase to AIDS.
To determine the effects of HIV-1 infection on malaria parasitaemia among consented residents of Milo sub-location, Bungoma County in western Kenya.
Study design
Census study evaluating malaria parasitaemia in asymptomatic individuals with unknown HIV-1 status.
After ethical approvals from both Moi University and MTRH research ethics committees, data of 3,258 participants were retrieved from both Webuye health demographic surveillance system (WHDSS), and Academic Model Providing Access to Healthcare (AMPATH) in the year 2010. The current study was identifying only un-diagnosed HIV-1 individuals at the time the primary data was collected. The data was then analysed for significant statistical association for malaria parasitemia and HIV-1 infection, using SPSS version 19. Demographic characteristics such as age and sex were summarized as means and percentages, while relationship between malaria parasitaemia and HIV-1 (serostatus) was analyzed using Chi square.
Age distribution for the 3,258 individuals ranged between 2 and 94 years, with a mean age of 26 years old. Females constituted 54.3%, while males were 45.8%. In terms of age distribution, 2–4 years old formed 15.1% of the study population, 5–9 years old were 8.8%, 10–14 years old were 8.6% while 15 years old and above were 67.5%. Of the 3,258 individuals whose data was eligible for analysis, 1.4% was newly diagnosed HIV-1 positive. Our findings showed a higher prevalence of malaria in children aged 2–10 years (73.4%), against the one reported in children in lake Victoria endemic region by the Kenya malaria indicator survey in the year 2010 (38.1%). There was no significant associations between the prevalence of asymptomatic malaria and HIV-1 status (p = 0.327). However, HIV-1/malaria co-infected individuals showed elevated mean malaria parasite density, compared to HIV-1 negative individuals, p = 0.002.
HIV-1 status was not found to have effect on malaria infection, but the mean malaria parsite density was significantly higher in HIV-1 positive than the HIV-1 negative population.
Electronic supplementary material
The online version of this article (doi:10.1186/s13104-015-1270-1) contains supplementary material, which is available to authorized users.
PMCID: PMC4501056  PMID: 26173396
HIV-1; Malaria; Malaria density
3.  Elevated expression of LAG-3, but not PD-1, is associated with impaired iNKT cytokine production during chronic HIV-1 infection and treatment 
Retrovirology  2015;12:17.
LAG-3 is a potent negative regulator of the immune response but its impact in HIV infection in poorly understood. Unlike exhaustion markers such as PD-1, Tim-3, 2B4 and CD160, LAG-3 is poorly expressed on bulk and antigen-specific T cells during chronic HIV infection and its expression on innate lymphocyte subsets is not well understood. The aim of this study was to assess LAG-3 expression and association with cellular dysfunction on T cells, NK cells and iNKT cells among a cohort of healthy and HIV-infected female sex workers in Nairobi, Kenya.
Ex vivo LAG-3 expression was measured by multiparametric flow cytometry, and plasma cytokine/chemokine concentrations measured by bead array. Although LAG-3 expression on bulk T cells was significantly increased among HIV-infected women, the proportion of cells expressing the marker was extremely low. In contrast, LAG-3 was more highly expressed on NK and iNKT cells and was not reduced among women treated with ART. To assess the functional impact of LAG-3 on iNKT cells, iNKT cytokine production was measured in response to lipid (αGalCer) and PMA/Io stimulation by both flow cytometry and cytokine bead array. iNKT cytokine production is profoundly altered by both HIV infection and treatment, and LAG-3, but not PD-1, expression is associated with a reduction in iNKT IFNγ production.
LAG-3 does not appear to mediate T cell exhaustion in this African population, but is instead expressed on innate lymphocyte subsets including iNKT cells. HIV infection alters iNKT cytokine production patterns and LAG-3 expression is uniquely associated with iNKT dysfunction. The continued expression of LAG-3 during treatment suggests it may contribute to the lack of innate immune reconstitution commonly observed during ART.
Electronic supplementary material
The online version of this article (doi:10.1186/s12977-015-0142-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4332911  PMID: 25810006
Exhaustion; iNKT cells; LAG-3 protein human; HIV; CD223; Immune dysfunction
4.  First Complete Genome Sequence of a Lineage III Peste des Petits Ruminants Virus 
Genome Announcements  2014;2(5):e01054-14.
We report the first complete genome sequence of a lineage III peste des petits ruminants virus (KN5/2011) using RNA extracted from goat lung tissue collected in Kenya in 2011. The genome shows the highest nucleotide sequence identity with lineage II peste des petits ruminants viruses (PPRVs) (86.1 to 87.2%) and the lowest with lineage IV PPRVs (82.5 to 83.8%).
PMCID: PMC4208322  PMID: 25342678
5.  Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfia caffra sond.): further evidence to support biotechnology in traditional medicinal plants 
The Quinine tree (Rauvolfia caffra) is used as a medicinal plant among traditional communities in many countries to manage tumors and other diseases associated with oxidative stress. To validate indigenous knowledge and possibly position this herb for technology uptake and utilization, we established the level of antioxidant activity in R. caffra, and probed for the presence of associated phytochemicals.
Antioxidant activity was determined on 1,1-diphenyl-2-picrylhydrazyl (DPPH) while major phytochemicals were identified by multiple tests on methanol fractions.
R. caffra showed promise as a cure, with antioxidant activity comparable to the commercially used drug quercetin (R. caffra = 79.7% ±1.9; quercetin = 82.6% ± 2.0). However, we found two phytochemicals with possible antagonistic effect: co-occurrence of alkaloids and saponins significantly reduced antioxidant activity (alkaloids only = 63%; alkaloids plus saponins = 15%; steroids, terpenoids and cardiac glycosides = 82%), thus alkaloids and saponins should be exclusive to each other in drug formulations.
Antagonistic relationship among phytochemicals would affect the efficacy of crude extracts as used in traditional medicine. Unlike in herbal medicine, use of modern biotechnology in extraction, purification and design of optimal combinations will ensure efficient drug formulations with optimum bioactivity and minimum toxicity. Metabolic pathway engineering under a controlled environment may optimize availability of desired compounds.
PMCID: PMC3816308  PMID: 24160735
Rauvolfia caffra; Antioxidant; Alkaloid; Quinine tree
6.  Characterization of Vibrio cholerae Bacteriophages Isolated from the Environmental Waters of the Lake Victoria Region of Kenya 
Current Microbiology  2013;68(1):64-70.
Over the last decade, cholera outbreaks have become common in some parts of Kenya. The most recent cholera outbreak occurred in Coastal and Lake Victoria region during January 2009 and May 2010, where a total of 11,769 cases and 274 deaths were reported by the Ministry of Public Health and Sanitation. The objective of this study is to isolate Vibriocholerae bacteriophages from the environmental waters of the Lake Victoria region of Kenya with potential for use as a biocontrol for cholera outbreaks. Water samples from wells, ponds, sewage effluent, boreholes, rivers, and lakes of the Lake Victoria region of Kenya were enriched for 48 h at 37 °C in broth containing a an environmental strain of V.cholerae. Bacteriophages were isolated from 5 out of the 42 environmental water samples taken. Isolated phages produced tiny, round, and clear plaques suggesting that these phages were lytic to V. cholerae. Transmission electron microscope examination revealed that all the nine phages belonged to the family Myoviridae, with typical icosahedral heads, long contractile tails, and fibers. Head had an average diameter of 88.3 nm and tail of length and width 84.9 and 16.1 nm, respectively. Vibriophages isolated from the Lake Victoria region of Kenya have been characterized and the isolated phages may have a potential to be used as antibacterial agents to control pathogenic V.cholerae bacteria in water reservoirs.
PMCID: PMC4173113  PMID: 23982202
7.  C868T Single Nucleotide Polymorphism and HIV Type 1 Disease Progression Among Postpartum Women in Kenya 
The C868T single nucleotide polymorphism in the CD4 receptor encodes an amino acid substitution of tryptophan for arginine in the third domain. Previous studies suggest that C868T increases the risk of HIV-1 acquisition; however, the influence of this single nucleotide polymorphism (SNP) on disease progression has not been established. The presence of the C868T polymorphism was not statistically significantly associated with HIV-1 disease progression outcomes in a cohort of postpartum Kenyan women.
PMCID: PMC3358105  PMID: 21902583
8.  Human Leukocyte Antigen (HLA) B*18 and Protection against Mother-to-Child HIV Type 1 Transmission 
Human leukocyte antigen (HLA) molecules regulate the cellular immune system and may be determinants of infant susceptibility to human immunodeficiency virus type 1 (HIV-1) infection. Molecular HLA typing for class I alleles was performed on infants followed in a Kenyan perinatal cohort. Early HIV-1 infection status was defined as infection occurring at birth or month 1, while late infection via breast milk was defined as first detection of HIV-1 after 1 month of age. Likelihood ratio tests based on a proportional hazards model adjusting for maternal CD4 T cell count and HIV-1 viral load at 32 weeks of gestation were used to test associations between infant allelic variation and incident HIV-1 infection. Among 433 infants, 76 (18%) were HIV-1 infected during 12 months of follow-up. HLA B*18 was associated with a significantly lower risk of early HIV-1 transmission [relative risk (RR) = 0.26; 95% confidence interval (CI) 0.04–0.82], and none of the 24 breastfeeding infants expressing HLA B*18 who were uninfected at month 1 acquired HIV-1 late via breast milk. We observed a trend toward increased early HIV-1 acquisition for infants presenting HLA A*29 (RR = 2.0; 95% CI 1.0–3.8) and increased late HIV-1 acquisition via breast milk for both Cw*07 and Cw*08 (RR = 4.0; 95% CI 1.0–17.8 and RR = 7.2; 95% CI 1.2–37.3, respectively). HLA B*18 may protect breast-feeding infants against both early and late HIV-1 acquisition, a finding that could have implications for the design and monitoring of HIV-1 vaccines targeting cellular immune responses against HIV-1.
PMCID: PMC3380108  PMID: 15307911
9.  CD8+ lymphocytes respond to different HIV epitopes in seronegative and infected subjects 
Journal of Clinical Investigation  2001;107(10):1303-1310.
HIV-1–specific cytotoxic T-lymphocyte (CTL) responses have been detected at a low frequency in many HIV-1–exposed, persistently seronegative (HEPS) subjects. However, it is unclear how CTLs could protect against HIV acquisition in HEPS subjects, when high levels of circulating CTL fail to prevent disease progression in most seropositive subjects. To address this issue we studied CD8+ lymphocyte responses to a panel of HIV-1 CTL epitopes in 91 HEPS and 87 HIV-1–infected Nairobi sex workers. HIV-specific responses in seropositive women focused strongly on epitopes rarely or never recognized in HEPS subjects, who targeted epitopes that were subdominant or unrecognized in infected women. These differences in epitope specificity were restricted by only those HLA class I alleles that are associated with a reduced risk of HIV-1 infection in this cohort. Late seroconversion in HEPS donors was associated with a switch in epitope specificity and/or immunodominance to those epitopes preferentially recognized by HIV-1–infected women. The likelihood of detecting HIV-1–specific responses in HEPS women increased with the duration of viral exposure, suggesting that HIV-1–specific CD8+ responses are acquired over time. The association between differential recognition of distinct CTL epitopes and protection from HIV-1 infection may have significant implications for vaccine design.
PMCID: PMC209302  PMID: 11375420

Results 1-9 (9)