Search tips
Search criteria

Results 1-25 (73)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Biogeography of the Intestinal Mucosal and Lumenal Microbiome in the Rhesus Macaque 
Cell host & microbe  2015;17(3):385-391.
The gut microbiome is widely studied by fecal sampling, but the extent to which stool reflects the commensal composition at intestinal sites is poorly understood. We investigated this relationship in rhesus macaques by 16S sequencing feces and paired lumenal and mucosal samples from 10 sites distal to the jejunum. Stool composition correlated highly with the colonic lumen and mucosa, and moderately with the distal small intestine. The mucosal microbiota varied most based on location and was enriched in oxygen-tolerant taxa (e.g. Helicobacter, Treponema), while the lumenal microbiota showed inter-individual variation and obligate anaerobe enrichment (e.g. Firmicutes). This mucosal and lumenal community variability corresponded to functional differences, such as nutrient availability. Additionally, Helicobacter, Faecalibacterium, and Lactobacillus levels in stool were highly predictive of their abundance at most other gut sites. These results quantify the composition and biogeographic relationships between gut microbial communities in macaques and support fecal sampling for translational studies.
PMCID: PMC4369771  PMID: 25732063
2.  High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome 
Studies of gene–environment (G × E) interactions require effective characterization of all environmental exposures from conception to death, termed the exposome. The exposome includes environmental exposures that impact health. Improved metabolic profiling methods are needed to characterize these exposures for use in personalized medicine. In the present study, we compared the analytic capability of dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) to previously used liquid chromatography-FTMS (LC-FTMS) analysis for high-throughput, top-down metabolic profiling. For DC-FTMS, we combined data from sequential LC-FTMS analyses using reverse phase (C18) chromatography and anion exchange (AE) chromatography. Each analysis was performed with electrospray ionization in the positive ion mode and detection from m/z 85 to 850. Run time for each column was 10 min with gradient elution; 10 µl extracts of plasma from humans and common marmosets were used for analysis. In comparison to analysis with the AE column alone, addition of the second LC-FTMS analysis with the C18 column increased m/z feature detection by 23–36%, yielding a total number of features up to 7,000 for individual samples. Approximately 50% of the m/z matched to known chemicals in metabolomic databases, and 23% of the m/z were common to analyses on both columns. Database matches included insecticides, herbicides, flame retardants, and plasticizers. Modularity clustering algorithms applied to MS-data showed the ability to detection clusters and ion interactions. DC-FTMS thus provides improved capability for high-performance metabolic profiling of the exposome and development of personalized medicine.
PMCID: PMC4517297
Metabolomics; LC/MS; Anion exchange; Reverse phase; Exposome; Personalized medicine; Predictive health; FT-ICR; Plasma
3.  Use of OpdA, an Organophosphorus (OP) Hydrolase, Prevents Lethality in an African Green Monkey Model of Acute OP Poisoning 
Toxicology  2014;317:1-5.
Organophosphorus (OP) pesticides are a diverse class of acetylcholinesterase (AChE) inhibitors that are responsible for tremendous morbidity and mortality worldwide, killing approximately 300,000 people annually. Enzymatic hydrolysis of OPs is a potential therapy for acute poisoning. OpdA, an OP hydrolase isolated from Agrobacterium radiobacter, has been shown to decrease lethality in rodent models of OP poisoning. This study investigated the effects of OpdA on AChE activity, plasma concentrations of OP, and signs of toxicity after administration of dichlorvos to nonhuman primates.
A dose of 75 mg/kg dichlorvos given orally caused apnea within 10 minutes with a progressive decrease in heart rate. Blood AChE activity decreased to zero within ten minutes. Respirations and AChE activity did not recover. The mean dichlorvos concentration rose to a peak of 0.66 μg/ml. Treated monkeys received 1.2 mg/kg OpdA iv immediately after poisoning with dichlorvos. In Opda-treated animals, heart and respiratory rates were unchanged from baseline over a 240-minute observation period. AChE activity slowly declined, but remained above 25% of baseline for the entire duration. Dichlorvos concentrations reached a mean peak of 0.19 μg/ml at 40 minutes after poisoning and decreased to a mean of 0.05 μg/ml at 240 minutes.
These results show that OpdA hydrolyzes dichlorvos in an African Green Monkey model of lethal poisoning, delays AChE inhibition, and prevents lethality.
PMCID: PMC4419748  PMID: 24447378
organophosphorus; pesticide; dichlorvos; hydrolysis; monkey
4.  Limited Dissemination and Shedding of the UL128 Complex-Intact, UL/b′-Defective Rhesus Cytomegalovirus Strain 180.92 
Journal of Virology  2014;88(16):9310-9320.
The UL128 complex of human cytomegalovirus (CMV) is a major determinant of viral entry into epithelial and endothelial cells and a target for vaccine development. The UL/b′ region of rhesus CMV contains several open reading frames, including orthologs of the UL128 complex. We recently showed that the coding content of the rhesus CMV (RhCMV) UL/b′ region predicts acute endothelial tropism and long-term shedding in vivo in the rhesus macaque model of CMV infection. The laboratory-passaged RhCMV 180.92 strain has a truncated UL/b′ region but an intact UL128 complex. To investigate whether the presence of the UL128 complex alone was sufficient to confer endothelial and epithelial tropism in vivo, we investigated tissue dissemination and viral excretion following experimental RhCMV 180.92 inoculation of RhCMV-seronegative rhesus macaques. We show the presence of at least two virus variants in the RhCMV 180.92 infectious virus stock. A rare variant noted for a nontruncated wild-type-virus-like UL/b′ region, rapidly emerged during in vivo replication and showed high-level replication in blood and tissues and excretion in urine and saliva, features similar to those previously reported in naturally occurring wild-type RhCMV infection. In contrast, the predominant truncated version of RhCMV 180.92 showed significantly lower plasma DNAemia and limited tissue dissemination and viral shedding. These data demonstrate that the truncated RhCMV 180.92 variant is attenuated in vivo and suggest that additional UL/b′ genes, besides the UL128 complex, are required for optimal in vivo CMV replication and dissemination.
IMPORTANCE An effective vaccine against human CMV infection will need to target genes that are essential for virus propagation and transmission. The human CMV UL128 complex represents one such candidate antigen since it is essential for endothelial and epithelial cell tropism, and is a target for neutralizing antibodies in CMV-infected individuals. In this study, we used the rhesus macaque animal model of CMV infection to investigate the in vivo function of the UL128 complex. Using experimental infection of rhesus macaques with a rhesus CMV virus variant that contained an intact UL128 complex but was missing several other genes, we show that the presence of the UL128 complex alone is not sufficient for widespread tissue dissemination and virus excretion. These data highlight the importance of in vivo studies in evaluating human CMV gene function and suggest that additional UL/b′ genes are required for optimal CMV dissemination and transmission.
PMCID: PMC4136270  PMID: 24899204
5.  The Common Marmoset Genome Provides Insight into Primate Biology and Evolution 
Worley, Kim C. | Warren, Wesley C. | Rogers, Jeffrey | Locke, Devin | Muzny, Donna M. | Mardis, Elaine R. | Weinstock, George M. | Tardif, Suzette D. | Aagaard, Kjersti M. | Archidiacono, Nicoletta | Rayan, Nirmala Arul | Batzer, Mark A. | Beal, Kathryn | Brejova, Brona | Capozzi, Oronzo | Capuano, Saverio B. | Casola, Claudio | Chandrabose, Mimi M. | Cree, Andrew | Dao, Marvin Diep | de Jong, Pieter J. | del Rosario, Ricardo Cruz-Herrera | Delehaunty, Kim D. | Dinh, Huyen H. | Eichler, Evan | Fitzgerald, Stephen | Flicek, Paul | Fontenot, Catherine C. | Fowler, R. Gerald | Fronick, Catrina | Fulton, Lucinda A. | Fulton, Robert S. | Gabisi, Ramatu Ayiesha | Gerlach, Daniel | Graves, Tina A. | Gunaratne, Preethi H. | Hahn, Matthew W. | Haig, David | Han, Yi | Harris, R. Alan | Herrero, Javier M. | Hillier, LaDeana W. | Hubley, Robert | Hughes, Jennifer F. | Hume, Jennifer | Jhangiani, Shalini N. | Jorde, Lynn B. | Joshi, Vandita | Karakor, Emre | Konkel, Miriam K. | Kosiol, Carolin | Kovar, Christie L. | Kriventseva, Evgenia V. | Lee, Sandra L. | Lewis, Lora R. | Liu, Yih-shin | Lopez, John | Lopez-Otin, Carlos | Lorente-Galdos, Belen | Mansfield, Keith G. | Marques-Bonet, Tomas | Minx, Patrick | Misceo, Doriana | Moncrieff, J. Scott | Morgan, Margaret B. | Muthuswamy, Raveendran | Nazareth, Lynne V. | Newsham, Irene | Nguyen, Ngoc Bich | Okwuonu, Geoffrey O. | Prabhakar, Shyam | Perales, Lora | Pu, Ling-Ling | Puente, Xose S. | Quesada, Victor | Ranck, Megan C. | Raney, Brian J. | Deiros, David Rio | Rocchi, Mariano | Rodriguez, David | Ross, Corinna | Ruffier, Magali | Ruiz, San Juana | Sajjadian, S. | Santibanez, Jireh | Schrider, Daniel R. | Searle, Steve | Skaletsky, Helen | Soibam, Benjamin | Smit, Arian F. A. | Tennakoon, Jayantha B. | Tomaska, Lubomir | Ullmer, Brygg | Vejnar, Charles E. | Ventura, Mario | Vilella, Albert J. | Vinar, Tomas | Vogel, Jan-Hinnerk | Walker, Jerilyn A. | Wang, Qing | Warner, Crystal M. | Wildman, Derek E. | Witherspoon, David J. | Wright, Rita A. | Wu, Yuanqing | Xiao, Weimin | Xing, Jinchuan | Zdobnov, Evgeny M. | Zhu, Baoli | Gibbs, Richard A. | Wilson, Richard K.
Nature genetics  2014;46(8):850-857.
A first analysis of the genome sequence of the common marmoset (Callithrix jacchus), assembled using traditional Sanger methods and Ensembl annotation, has permitted genomic comparison with apes and that old world monkeys and the identification of specific molecular features a rapid reproductive capacity partly due to may contribute to the unique biology of diminutive The common marmoset has prevalence of this dizygotic primate. twins. Remarkably, these twins share placental circulation and exchange hematopoietic stem cells in utero, resulting in adults that are hematopoietic chimeras.
We observed positive selection or non-synonymous substitutions for genes encoding growth hormone / insulin-like growth factor (growth pathways), respiratory complex I (metabolic pathways), immunobiology, and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibit rapid sequence evolution. This New World monkey genome sequence enables significantly increased power for comparative analyses among available primate genomes and facilitates biomedical research application.
PMCID: PMC4138798  PMID: 25038751
6.  The Efficacy of T Cell-Mediated Immune Responses Is Reduced by the Envelope Protein of the Chimeric HIV-1/SIV-KB9 Virus In Vivo1 
Gp120 is a critical component of the envelope of HIV-1. Its role in viral entry is well described. In view of its position on the viral envelope, gp120 is a part of the retrovirus that immune cells encounter first and has the potential to influence antiretroviral immune responses. We propose that high levels of gp120 are present in tissues and may contribute to the failure of the immune system to fully control and ultimately clear the virus. Herein, we show for the first time that lymphoid tissues from acutely HIV-1/SIV (SHIV)-KB9-infected macaques contain deposits of gp120 at concentrations that are high enough to induce suppressive effects on T cells, thus negatively regulating the antiviral CTL response and contributing to virus survival and persistence. We also demonstrate that SHIV-KB9 gp120 influences functional T cell responses during SHIV infection in a manner that suppresses degranulation and cytokine secretion by CTLs. Finally, we show that regulatory T cells accumulate in lymphoid tissues during acute infection and that they respond to gp120 by producing TGFβ, a known suppressant of cytotoxic T cell activity. These findings have significant implications for our understanding of the contribution of non-entry-related functions of HIV-1 gp120 to the pathogenesis of HIV/AIDS.
PMCID: PMC4236110  PMID: 18832708
7.  SIV Vpx Is Essential for Macrophage Infection but Not for Development of AIDS 
PLoS ONE  2014;9(1):e84463.
Analysis of rhesus macaques infected with a vpx deletion mutant virus of simian immunodeficiency virus mac239 (SIVΔvpx) demonstrates that Vpx is essential for efficient monocyte/macrophage infection in vivo but is not necessary for development of AIDS. To compare myeloid-lineage cell infection in monkeys infected with SIVΔvpx compared to SIVmac239, we analyzed lymphoid and gastrointestinal tissues from SIVΔvpx-infected rhesus (n = 5), SIVmac239-infected rhesus with SIV encephalitis (7 SIV239E), those without encephalitis (4 SIV239noE), and other SIV mutant viruses with low viral loads (4 SIVΔnef, 2 SIVΔ3). SIV+ macrophages and the percentage of total SIV+ cells that were macrophages in spleen and lymph nodes were significantly lower in rhesus infected with SIVΔvpx (2.2%) compared to those infected with SIV239E (22.7%), SIV239noE (8.2%), and SIV mutant viruses (10.1%). In colon, SIVΔvpx monkeys had fewer SIV+ cells, no SIV+ macrophages, and lower percentage of SIV+ cells that were macrophages than the other 3 groups. Only 2 SIVΔvpx monkeys exhibited detectable virus in the colon. We demonstrate that Vpx is essential for efficient macrophage infection in vivo and that simian AIDS and death can occur in the absence of detectable macrophage infection.
PMCID: PMC3897363  PMID: 24465411
8.  Influence of Mismatch of Env Sequences on Vaccine Protection by Live Attenuated Simian Immunodeficiency Virus 
Journal of Virology  2013;87(13):7246-7254.
Vaccine/challenge experiments that utilize live attenuated strains of simian immunodeficiency virus (SIV) in monkeys may be useful for elucidating what is needed from a vaccine in order to achieve protective immunity. Derivatives of SIVmac239 and SIVmac239Δnef were constructed in which env sequences were replaced with those of the heterologous strain E543; these were then used in vaccine/challenge experiments. When challenge occurred at 22 weeks, 10 of 12 monkeys exhibited apparent sterilizing immunity despite a mismatch of Env sequences, compared to 12 of 12 monkeys with apparent sterilizing immunity when challenge virus was matched in its Env sequence. However, when challenge occurred at 6 weeks, 6 of 6 SIV239Δnef-immunized monkeys became superinfected by challenge virus mismatched in its Env sequence (SIV239/EnvE543). These results contrast markedly not only with the results of the week 22 challenge but also with the sterilizing immunity observed in 5 of 5 SIV239Δnef-immunized rhesus monkeys challenged at 5 weeks with SIV239, i.e., with no mismatch of Env sequences. We conclude from these studies that a mismatch of Env sequences in the challenge virus can have a dramatic effect on the extent of apparent sterilizing immunity when challenge occurs relatively early, 5 to 6 weeks after the nef-deleted SIV administration. However, by 22 weeks, mismatch of Env sequences has little or no influence on the degree of protection against challenge virus. Our findings suggest that anti-Env immune responses are a key component of the protective immunity elicited by live attenuated, nef-deleted SIV.
PMCID: PMC3700272  PMID: 23637396
9.  Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome 
Cell  2012;151(2):253-266.
Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not non-pathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.
PMCID: PMC3490196  PMID: 23063120
10.  The Marmoset as a Model of Aging and Age-Related Diseases 
The common marmoset (Callithrix jacchus) is poised to become a standard nonhuman primate aging model. With an average lifespan of 5 to 7 years and a maximum lifespan of 16.5 years, marmosets are the shortest-lived anthropoid primates. They display age-related changes in pathologies that mirror those seen in humans, such as cancer, amyloidosis, diabetes, and chronic renal disease. They also display predictable age-related differences in lean mass, calf circumference, circulating albumin, hemoglobin, and hematocrit. Features of spontaneous sensory and neurodegenerative change—for example, reduced neurogenesis, β-amyloid deposition in the cerebral cortex, loss of calbindin D28k binding, and evidence of presbycusis—appear between the ages of 7 and 10 years. Variation among colonies in the age at which neurodegenerative change occurs suggests the interesting possibility that marmosets could be specifically managed to produce earlier versus later occurrence of degenerative conditions associated with differing rates of damage accumulation. In addition to the established value of the marmoset as a model of age-related neurodegenerative change, this primate can serve as a model of the integrated effects of aging and obesity on metabolic dysfunction, as it displays evidence of such dysfunction associated with high body weight as early as 6 to 8 years of age.
PMCID: PMC3775658  PMID: 21411858
aging research; hearing loss; marmoset (Callithrix jacchus); neurodegeneration; nonhuman primate (NHP); obesity
11.  Imidazoquinoline TLR8 agonists activate human newborn monocytes and dendritic cells via adenosine-refractory and caspase-1-dependent pathways 
Newborns suffer frequent infection and manifest impaired vaccine responses, motivating a search for neonatal vaccine adjuvants. Alum is a neonatal adjuvant, but may confer a Th2 bias. Toll-like receptor (TLR) agonists are candidate adjuvants, but human neonatal cord blood monocytes (Mos) demonstrate impaired Th1-polarizing responses to many TLR agonists due to plasma adenosine acting via cAMP. TLR8 agonists, including imidazoquinolines (IMQs) such as the small synthetic 3M-002, induce adult-level TNF from neonatal Mos, but the scope and mechanisms of IMQ-induced activation of neonatal Mos and Mo-derived dendritic cells (MoDCs) have not been reported.
To characterize IMQ-induced activation of neonatal Mos and MoDCs.
Neonatal cord and adult peripheral blood Mos and MoDCs were cultured in autologous plasma; Alum- and TLR agonist-induced cytokines and co-stimulatory molecules were measured. TLR8 and inflammasome function were assayed using siRNA and western blotting/caspase-1 inhibitory peptide, respectively. The ontogeny of TLR8 agonist–induced cytokine responses was defined in Rhesus macaque whole blood ex vivo.
IMQs were more potent and effective than Alum at inducing TNF and IL-1β from Mos. 3M-002 induced robust TLR pathway transcriptome activation and Th1-polarizing cytokine production in neonatal and adult Mos and MoDCs, signaling via TLR8 in an adenosine/cAMP- refractory manner. Newborn MoDCs displayed impaired LPS/ATP-induced caspase-1-mediated IL-1β production, but robust 3M-002-induced caspase-1-mediated inflammasome activation independent of exogenous ATP. TLR8-IMQs induced robust TNF and IL-1β in whole blood of Rhesus macaques at birth and infancy.
IMQ TLR8 agonists engage adenosine-refractory TLR8 and inflammasome pathways to induce robust Mo and MoDC activation and represent promising neonatal adjuvants.
PMCID: PMC3387351  PMID: 22521247
TLR8; Innate immunity; Neonate; Newborn; Alum; Adjuvant; Adenosine; IL-1β; Caspase-1; Inflammasome
12.  High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring 
Toxicology  2012;295(1-3):47-55.
High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses, we applied HPMP and bioinformatics analysis to plasma of humans, rhesus macaques, marmosets, pigs, sheep, rats and mice to determine: 1) whether more chemicals are detected in humans living in a less controlled environment than captive species, and 2) whether a subset of plasma chemicals with similar inter-species and intra-species variation could be identified for use in comparative toxicology. Results show that the number of chemicals detected was similar in humans (3221) and other species (range 2537 to 3373). Metabolite patterns were most similar within species and separated samples according to family and order. A total of 1485 chemicals were common to all species; 37% of these matched chemicals in human metabolomic databases and included chemicals in 137 out of 146 human metabolic pathways. Probability-based modularity clustering separated 644 chemicals, including many endogenous metabolites, with inter-species variation similar to intra-species variation. The remaining chemicals had greater inter-species variation and included environmental chemicals as well as GSH and methionine. Together, the data suggest that HPMP provides a platform that can be useful within human populations and controlled animal studies to simultaneously evaluate environmental exposures and biological responses to such exposures.
PMCID: PMC3332037  PMID: 22387982
metabolomics; plasma; mass spectrometry; probability-based modularity clustering; exposome
13.  SIRPα and FHOD1 are unique markers of littoral cells, a recently evolved major cell population of red pulp of human spleen 
Asplenic individuals are compromised not only in their ability to destroy infectious agents, but are at increased risk of death from autoimmune disease, certain tumors, and ischemic heart disease. Enhanced mortality is attributed to lack of phagocytes sequestered in spleen that efficiently engulf and destroy appropriate targets, though related cells are found elsewhere. To determine whether a unique population regulates RBC-pathogen clearance and filtration of altered self, we reviewed the anatomic literature and analyzed in situ by immunohistochemistry and immunofluorescence the expression patterns of a little-characterized cell that dominates the splenic red pulp of man and closely related primates-the venous sinus lining or littoral cell (LC). High expression of the formin FHOD1 outlines the LC population. Though LCs are endothelial-like in distribution they express several macrophage directed proteins, the RBC antigen DARC and T-cell co-receptor CD8α/α yet they lack lineage-associated markers CD34 and CD45. Strikingly, SIRPα (CD172a) expression in human spleen concentrates on LCs, consistent with recent demonstration of a key role in RBC turnover and elimination versus release of infected or altered self. Our results indicate human LCs (SIRPα+, FHOD1+, CD8α/α+, CD34−, CD45−) comprise a highly plastic barrier cell population that emerged late in primate evolution coordinate with CD8 expression. Unique to Hominidae, LCs may be the ultimate determinant of which cells re-circulate after passage through human spleen.
PMCID: PMC3331893  PMID: 22490440
Spleen; littoral cell; angioma; RBC; FHOD1; DARC; CD8α/α; SIRPα; primate
14.  Patterns of Acute Rhesus Cytomegalovirus (RhCMV) Infection Predict Long-Term RhCMV Infection 
Journal of Virology  2012;86(11):6354-6357.
We previously reported that long-term rhesus cytomegalovirus (RhCMV) excretion in infected macaques was related to UL/b′ coding content. Acute biopsy specimens of the inoculation sites from the previous study have now been analyzed to determine whether there were acute phenotypic predictors of long-term RhCMV infection. Only in animals displaying acute endothelial tropism and neutrophilic inflammation was RhCMV excretion detected. The results imply that vaccinating against these early viral determinants would significantly impede long-term RhCMV infection.
PMCID: PMC3372188  PMID: 22491451
15.  A small nonhuman primate model for filovirus-induced disease 
Virology  2011;420(2):117-124.
Ebolavirus and Marburgvirus are members of the filovirus family and induce a fatal hemorrhagic disease in humans and nonhuman primates with 90% case fatality. To develop a small nonhuman primate model for filovirus disease, common marmosets (Callithrix jacchus) were intramuscularly inoculated with wild type Marburgvirus Musoke or Ebolavirus Zaire. The infection resulted in a systemic fatal disease with clinical and morphological features closely resembling human infection. Animals experienced weight loss, fever, high virus titers in tissue, thrombocytopenia, neutrophilia, high liver transaminases and phosphatases and disseminated intravascular coagulation. Evidence of a severe disseminated viral infection characterized principally by multifocal to coalescing hepatic necrosis was seen in EBOV animals. MARV-infected animals displayed only moderate fibrin deposition in the spleen. Lymphoid necrosis and lymphocytic depletion observed in spleen. These findings provide support for the use of the common marmoset as a small nonhuman primate model for filovirus induced hemorrhagic fever.
PMCID: PMC3195836  PMID: 21959017
Ebolavirus; Marburgvirus; Nonhuman primate; Hemorrhagic fever; Common marmoset; Callithrix jacchus; Coagulapathy
16.  Specific Pathogen-Free Status Alters Immunophenotype in Rhesus Macaques: Implications for the Study of Simian Immunodeficiency Virus 
AIDS Research and Human Retroviruses  2011;27(10):1033-1042.
The repertoire of viruses to which research primates are exposed, even in the absence of clinical disease, may contribute to experimental confounding. In this study we examined whether standard specific pathogen-free (SPF) rhesus macaques exposed to a wider spectrum of enzootic viruses and expanded SPF macaques derived to exclude a greater number of viral agents would display alterations in immune activation or immune cell populations. Given the impact of immunophenotype on human immunodeficiency virus (HIV) progression and the importance of the simian immunodeficiency virus (SIV) model for the study of HIV pathogenesis, we elected to additionally examine the impact of SPF status on the capacity of peripheral blood mononuclear cells (PBMCs) to support SIV replication. The expanded SPF group displayed significant immune alterations including increased serum interleukin (IL)-15 and a greater in vitro elaboration of GM-CSF, IL1ra, VEGF, IL-10, IL12/23, and MIP-1b. Consistent with reduced viral antigenic exposure in expanded SPF macaques, decreased CD4+ and CD8+ transitional and effector memory (TEM) cell populations were observed. Expanded SPF PBMC cultures also demonstrated an increased peak (192.61 ng/ml p27) and area under the curve in in vitro SIV production (1968.64 ng/ml p27) when compared to standard SPF macaques (99.32 ng/ml p27; p=0.03 and 915.17 ng/ml p27; p=0.03, respectively). In vitro SIV replication did not correlate with CD4+ TEM cell counts but was highly correlated with serum IL-15 in the subset of animals examined. Findings suggest that an altered immunophenotype associated with the maintenance of primates under differing levels of bioexclusion has the potential to impact the outcome of SIV studies and models for which the measurement of immunologic endpoints is critical.
PMCID: PMC3186704  PMID: 21391843
17.  ADCC Develops Over Time during Persistent Infection with Live-Attenuated SIV and Is Associated with Complete Protection against SIVmac251 Challenge 
PLoS Pathogens  2012;8(8):e1002890.
Live-attenuated strains of simian immunodeficiency virus (SIV) routinely confer apparent sterilizing immunity against pathogenic SIV challenge in rhesus macaques. Understanding the mechanisms of protection by live-attenuated SIV may provide important insights into the immune responses needed for protection against HIV-1. Here we investigated the development of antibodies that are functional against neutralization-resistant SIV challenge strains, and tested the hypothesis that these antibodies are associated with protection. In the absence of detectable neutralizing antibodies, Env-specific antibody-dependent cell-mediated cytotoxicity (ADCC) emerged by three weeks after inoculation with SIVΔnef, increased progressively over time, and was proportional to SIVΔnef replication. Persistent infection with SIVΔnef elicited significantly higher ADCC titers than immunization with a non-persistent SIV strain that is limited to a single cycle of infection. ADCC titers were higher against viruses matched to the vaccine strain in Env, but were measurable against viruses expressing heterologous Env proteins. In two separate experiments, which took advantage of either the strain-specificity or the time-dependent maturation of immunity to overcome complete protection against SIVmac251 challenge, measures of ADCC activity were higher among the SIVΔnef-inoculated macaques that remained uninfected than among those that became infected. These observations show that features of the antibody response elicited by SIVΔnef are consistent with hallmarks of protection by live-attenuated SIV, and reveal an association between Env-specific antibodies that direct ADCC and apparent sterilizing protection by SIVΔnef.
Author Summary
Live-attenuated vaccines can prevent simian immunodeficiency virus (SIV) infection upon experimental challenge of rhesus macaques. Although safety considerations preclude vaccinating humans with live-attenuated HIV-1, it may be possible to replicate the types of immunity induced by live-attenuated SIV through an alternative approach. Thus, identifying the immune responses underlying protection by live-attenuated SIV and understanding their induction would provide guidance for HIV-1 vaccine design. An important role for the maturation of virus-specific antibody responses could explain the time-dependent development of protection by live-attenuated SIV. However, antibodies that block the entry of the challenge virus into cells are usually undetectable. Antibodies can also direct the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). Here we show that live-attenuated SIV induces progressive increases in ADCC over time, and that the development of these antibodies is dependent upon the persistent replication of the vaccine strain. In two different experiments, the animals immunized with live-attenuated SIV that remained uninfected after pathogenic SIV challenge had higher measures of ADCC than those that became infected. Our results suggest that antibodies contribute to protection by live-attenuated SIV, and that persistent stimulation of antibody responses may be essential for HIV-1 vaccines to induce high ADCC activity.
PMCID: PMC3426556  PMID: 22927823
18.  Vaccine Protection Against Acquisition of Neutralization-Resistant SIV Challenges in Rhesus Monkeys 
Nature  2012;482(7383):89-93.
Preclinical studies of HIV-1 vaccine candidates have typically shown post-infection virologic control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges1–3. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant virus challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing SIVsmE543 Gag, Pol, and Env antigens resulted in a ≥80% reduction in the per-exposure probability of infection4,5 against repetitive, intrarectal SIVmac251 challenges in rhesus monkeys. Protection against acquisition of infection exhibited distinct immunologic correlates as compared with post-infection virologic control and required the inclusion of Env in the vaccine regimen. These data demonstrate the first proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.
PMCID: PMC3271177  PMID: 22217938
19.  International Seroepidemiology of Adenovirus Serotypes 5, 26, 35, and 48 in Pediatric and Adult Populations 
Vaccine  2011;29(32):5203-5209.
Recombinant adenovirus serotype 5 (rAd5) vaccine vectors for HIV-1 and other pathogens have been shown to be limited by high titers of Ad5 neutralizing antibodies (NAbs) in the developing world. Alternative serotype rAd vectors have therefore been constructed. Here we report Ad5, Ad26, Ad35, and Ad48 NAb titers in 4,381 individuals from North America, South America, sub-Saharan Africa, and Southeast Asia. As expected, Ad5 NAb titers were both frequent and high magnitude in sub-Saharan Africa and Southeast Asia. In contrast, Ad35 NAb titers proved infrequent and low in all regions studied, and Ad48 NAbs were rare in all regions except East Africa. Ad26 NAbs were moderately common in adults in sub-Saharan Africa and Southeast Asia, but Ad26 NAb titers proved markedly lower than Ad5 NAb titers in all regions, and these relatively low Ad26 NAb titers did not detectably suppress the immunogenicity of 4×1010 vp of a rAd26-Gag/Pol/Env/Nef vaccine in rhesus monkeys. These data inform the clinical development of alternative serotype rAd vaccine vectors in the developing world.
PMCID: PMC3138857  PMID: 21619905
20.  Immunophenotypic Alterations in Resident Immune Cells and Myocardial Fibrosis in the Aging Rhesus Macaque (Macaca mulatta) Heart 
Toxicologic Pathology  2012;40(4):637-646.
The rhesus macaque (Macaca mulatta) is used extensively in translational biomedical research and drug development studies and is an important model of aging. Macaques often develop myocardial fibrosis with age which can result in the loss of normal cardiac architecture with the expansion of the extracellular matrix and deposition of collagen. The etiology and pathogenesis of this pernicious process is poorly understood. Cardiac fibrosis was assessed using histologic and immunohistochemical techniques in cardiac tissue sections from 34 rhesus macaques. Overall left ventricular and left ventricular mid-myocardial interstitial/perivascular fibrosis were positively correlated with age (r=0.6522, p<0.0001 and r=0.4704, p=0.005, respectively). When divided into young (mean=2.8 years), middle-aged (mean=17.5 years), and advanced age (mean=29.2 years) groups, immunophenotypic characterization of antigen presenting cells revealed differential expression of CD163 and DC-SIGN between the young and middle-aged groups compared to the advanced age group (p<0.0001). HAM-56 expression decreased significantly in the advanced age cohort (p=0.0021). The expression of CD8, CD163, and DCSIGN correlated positively with age (r=0.3999, p= 0.0191; r=0.5676, p=0.0005; r=0.5245, p=0.0014 respectively). These results show the importance of myocardial fibrosis as a common age-related pathology and additionally, alterations in T cell, macrophage, and dendritic cell phenotype in rhesus macaque myocardium are associated with age but unassociated with the fibrosis.
PMCID: PMC3387677  PMID: 22328408
aging; cardiac fibrosis; immunohistochemistry; rhesus macaque; macrophage; dendritic cell; lymphocyte
21.  Extended safety and efficacy studies of a live attenuated double leucine and pantothenate auxotroph of Mycobacterium tuberculosis as a vaccine candidate 
Vaccine  2011;29(29-30):4839-4847.
We have previously described the development of a live, fully attenuated Mycobacterium tuberculosis (Mtb) vaccine candidate strain with two independent attenuating auxotrophic mutations in leucine and pantothenate biosynthesis. In the present work, those studies have been extended to include testing for protective efficacy in a long-term guinea pig survival model and safety testing in the highly tuberculosis susceptible Rhesus macaque. To model the safety of the ΔleuD ΔpanCD strain in HIV-infected human populations, a Simian Immunodeficiency Virus (SIV)-infected Rhesus macaque group was included. Immunization with the non-replicating ΔleuD ΔpanCD conferred long-term protection against challenge with virulent M. tuberculosis equivalent to that afforded by BCG as measured by guinea pig survival. In safety studies, clinical, hematological and bacteriological monitoring of both SIV-positive and SIV-negative Rhesus macaques immunized with ΔleuD ΔpanCD, revealed no vaccine-associated adverse effects. The results support the further development of the ΔleuD ΔpanCD strain as a viable tuberculosis (TB) vaccine candidate.
PMCID: PMC3146342  PMID: 21549795
Tuberculosis; vaccine; auxotroph; SIV; Rhesus macaque; guinea pig
22.  Hypergammaglobulinemia in an SIV-Infected Rhesus Macaque with a B cell neoplasm with plasma cell differentiation 
Journal of medical primatology  2011;40(3):200-204.
An SIV-infected rhesus macaque presented with anemia, hypercalcemia, and hyperglobulinemia. Neoplastic round cells with plasma cell morphology infiltrated multiple organs and stained immunohistochemically positive for CD45, MUM1/IRF4, CD138, VS38C, and Kappa light chain and variably positive for CD20 and CD79a; consistent with a B-cell neoplasm with plasma cell differentiation.
PMCID: PMC3098314  PMID: 21401622
Rhesus macaque; SIV; hypergammaglobulinemia; lymphoproliferative disorder; plasma cell
23.  Differential contribution of dietary fat and monosaccharide to metabolic syndrome in the common marmoset (Callithrix jacchus) 
Obesity (Silver Spring, Md.)  2010;19(6):1145-1156.
There is a critical need for animal models to study aspects type 2 diabetes mellitus pathogenesis and prevention. While the rhesus macaque is such an established model, the common marmoset has added benefits including reduced zoonotic risks, shorter life span, and a predisposition to birth twins demonstrating chimerism. The marmoset as a model organism for the study of metabolic syndrome has not been fully evaluated. Marmosets fed high-fat or glucose-enriched diets were followed longitudinally to observe effects on morphometric and metabolic measures. Effects on pancreatic histomorphometry and vascular pathology were examined terminally. The glucose–enriched diet group developed an obese phenotype and a prolonged hyperglycemic state evidenced by a rapid and persistent increase in mean glycosylated hemoglobin (HgbA1c) observed as early as week 16. In contrast, marmosets fed a high-fat diet did not maintain an obese phenotype and demonstrated a delayed increase in HgbA1c that did not reach statistical significance until week 40. Consumption of either diet resulted in profound pancreatic islet hyperplasia suggesting a compensation for increased insulin requirements. Although the high fat diet group developed atherosclerosis of increased severity, the presence of lesions correlated with glucose intolerance only in the glucose-enriched diet group. The altered timing of glucose dysregulation, differential contribution to obesity, and variation in vascular pathology suggests mechanisms of effect specific to dietary nutrient content. Feeding nutritionally modified diets to common marmosets recapitulates aspects of metabolic disease and represents a model that may prove instrumental to elucidating the contribution of nutrient excess to disease development.
PMCID: PMC3099141  PMID: 21164504
24.  Vaccine Protection against Simian Immunodeficiency Virus in Monkeys Using Recombinant Gamma-2 Herpesvirus▿ 
Journal of Virology  2011;85(23):12708-12720.
Recombinant strains of replication-competent rhesus monkey rhadinovirus (RRV) were constructed in which strong promoter/enhancer elements were used to drive expression of simian immunodeficiency virus (SIV) Env or Gag or a Rev-Tat-Nef fusion protein. Cultured rhesus monkey fibroblasts infected with each recombinant strain were shown to express the expected protein. Three RRV-negative and two RRV-positive rhesus monkeys were inoculated intravenously with a mixture of these three recombinant RRVs. Expression of SIV Gag was readily detected in lymph node biopsy specimens taken at 3 weeks postimmunization. Impressive anti-SIV cellular immune responses were elicited on the basis of major histocompatibility complex (MHC) tetramer staining and gamma interferon enzyme-linked immunospot (ELISPOT) assays. Responses were much greater in magnitude in the monkeys that were initially RRV negative but were still readily detected in the two monkeys that were naturally infected with RRV at the time of immunization. By 3 weeks postimmunization, responses measured by MHC tetramer staining in the two Mamu-A*01+ RRV-negative monkeys reached 9.3% and 13.1% of all CD8+ T cells in peripheral blood to the Gag CM9 epitope and 2.3% and 7.3% of all CD8+ T cells in peripheral blood to the Tat SL8 epitope. Virus-specific CD8+ T cell responses persisted at high levels up to the time of challenge at 18 weeks postimmunization, and responding cells maintained an effector memory phenotype. Despite the ability of the RRVenv recombinant to express high levels of Env in cultured cells, and despite the appearance of strong anti-RRV antibody responses in immunized monkeys, anti-Env antibody responses were below our ability to detect them. Immunized monkeys, together with three unimmunized controls, were challenged intravenously with 10 monkey infectious doses of SIVmac239. All five immunized monkeys and all three controls became infected with SIV, but peak viral loads were 1.2 to 3.0 log10 units lower and chronic-phase viral loads were 1.0 to 3.0 log10 units lower in immunized animals than the geometric mean of unimmunized controls. These differences were statistically significant. Anti-Env antibody responses following challenge indicated an anamnestic response in the vaccinated monkeys. These findings further demonstrate the potential of recombinant herpesviruses as preventive vaccines for AIDS. We hypothesize that this live, replication-competent, persistent herpesvirus vector could match, or come close to matching, live attenuated strains of SIV in the degree of protection if the difficulty with elicitation of anti-Env antibody responses can be overcome.
PMCID: PMC3209374  PMID: 21900170
25.  Recombinant Vesicular Stomatitis Virus Vaccine Vectors Expressing Filovirus Glycoproteins Lack Neurovirulence in Nonhuman Primates 
The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses an individual filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV) GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV) GP; three animals received rVSV-wild type (wt) vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.
Author Summary
Ebola and Marburg viruses are categorized as Category A priority pathogens by several US Government agencies as a result of their high mortality rates and potential for use as agents of bioterrorism. There are currently no vaccines or therapeutics approved for human use. A replication-competent, recombinant vesicular stomatitis virus (rVSV) vector expressing filovirus glycoproteins (GP), in place of the VSV G protein has shown promise in lethal nonhuman primate models of filovirus infection as both a single-injection preventive vaccine and a postexposure treatment. Replication-competent vaccines that are intended for use in humans usually undergo neurovirulence testing as was done for measles virus, mumps virus, yellow fever virus, and poliovirus vaccines. Here we used a conventional neurovirulence test to evaluate the safety of our rVSV-based Zaire ebolavirus and Lake Victoria marburgvirus GP vaccines in cynomolgus macaques. Importantly, we demonstrate for the first time that these rVSV filovirus GP vectors lack neurovirulence when compared to a rVSV wild-type vector.
PMCID: PMC3308941  PMID: 22448291

Results 1-25 (73)