Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Early Short-Term Antiretroviral Therapy Is Associated with a Reduced Prevalence of CD8+FoxP3+ T Cells in Simian Immunodeficiency Virus-Infected Controller Rhesus Macaques 
Regulatory T cells contain a mix of CD4 and CD8 T cell subsets that can suppress immune activation and at the same time suppress immune responses, thereby contributing to disease progression. Recent studies have shown that an increased prevalence of CD8+FoxP3+ T regulatory cells was associated with immune suppression and diminished viral control in simian immunodeficiency virus (SIV)-infected rhesus macaques. Preventing an increase in the prevalence of CD8 T regulatory subsets is likely to lead to a better long-term outcome. Here we show that short-term antiretroviral therapy initiated within 1 week after SIV infection was associated with lower viral set point and immune activation after withdrawal of therapy as compared to untreated animals. Early short-term treated controller animals were found to have better SIV-specific immune responses and a significantly lower prevalence of immunosuppressive CD8+FoxP3+ T cells. Lower levels of CD8+FoxP3+ T cells coincided with preservation of CD4+FoxP3+ T cells at homeostatic levels, and significantly correlated with lower immune activation, suggesting a role for viral infection-driven immune activation in the expansion of CD8+FoxP3+ T cells. Interestingly, initiation of continuous therapy later in infection did not reduce the increased prevalence of CD8+FoxP3+ T cells to homeostatic levels. Taken together, our results suggest that early antiretroviral therapy preserves the integrity of the immune system leading to a lower viral set point in controller animals, and prevents alterations in the homeostatic balance between CD4+ and CD8+ T regulatory cells that could aid in better long-term outcome.
PMCID: PMC3123528  PMID: 21142402
2.  Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C▿ †  
Journal of Virology  2008;82(23):11651-11668.
Identifying the viral epitopes targeted by broad neutralizing antibodies (NAbs) that sometimes develop in human immunodeficiency virus type 1 (HIV-1)-infected subjects should assist in the design of vaccines to elicit similar responses. Here, we investigated the activities of a panel of 24 broadly neutralizing plasmas from subtype B- and C-infected donors using a series of complementary mapping methods, focusing mostly on JR-FL as a prototype subtype B primary isolate. Adsorption with gp120 immobilized on beads revealed that an often large but variable fraction of plasma neutralization was directed to gp120 and that in some cases, neutralization was largely mediated by CD4 binding site (CD4bs) Abs. The results of a native polyacrylamide gel electrophoresis assay using JR-FL trimers further suggested that half of the subtype B and a smaller fraction of subtype C plasmas contained a significant proportion of NAbs directed to the CD4bs. Anti-gp41 neutralizing activity was detected in several plasmas of both subtypes, but in all but one case, constituted only a minor fraction of the overall neutralization activity. Assessment of the activities of the subtype B plasmas against chimeric HIV-2 viruses bearing various fragments of the membrane proximal external region (MPER) of HIV-1 gp41 revealed mixed patterns, implying that MPER neutralization was not dominated by any single specificity akin to known MPER-specific monoclonal Abs. V3 and 2G12-like NAbs appeared to make little or no contribution to JR-FL neutralization titers. Overall, we observed significant titers of anti-CD4bs NAbs in several plasmas, but approximately two-thirds of the neutralizing activity remained undefined, suggesting the existence of NAbs with specificities unlike any characterized to date.
PMCID: PMC2583680  PMID: 18815292

Results 1-2 (2)