Search tips
Search criteria

Results 1-25 (53)

Clipboard (0)

Select a Filter Below

Year of Publication
author:("Latz, dicke")
1.  The sterile inflammatory response 
Annual review of immunology  2010;28:321-342.
The acute inflammatory response is a double-edged sword. On the one hand it plays a key role in initial host defense particularly against many infections. On the other hand its aim is imprecise and as a consequence, when it is drawn into battle, it can cause collateral damage in tissues. In situations where the inciting stimulus is sterile, the cost-benefit ratio may be high; because of this, sterile inflammation underlies the pathogenesis of a number of diseases. While there have been major advances in our understanding of how microbes trigger inflammation, much less has been learned about this process in sterile situations. This review focuses on a subset of the many sterile stimuli that can induce inflammation – specifically dead cells and a variety of irritant particles, including crystals, minerals, and protein aggregates. Although this subset of stimuli is structurally very diverse and might appear to be unrelated, there is accumulating evidence that the innate immune system may recognize them in similar ways and stimulate the sterile inflammatory response via common pathways. Here we review established and emerging data about these responses.
PMCID: PMC4315152  PMID: 20307211
Sterile particulates; inflammasome; danger signal; IL-1; NLRP3
2.  ASC has extracellular and prionoid activities that propagate inflammation 
Nature immunology  2014;15(8):727-737.
Microbes or danger signals trigger inflammasome sensors, which induce polymerization of the adapter ASC and assembly of an ASC speck. ASC specks recruit and activate caspase-1, which induces IL-1β cytokine maturation and pyroptotic cell death. Here we show that after pyroptosis ASC specks accumulate in the extracellular space, where they promote further IL-1β maturation. In addition, phagocytosis of ASC specks induces lysosomal damage, nucleation of soluble ASC as well as caspase-1 and IL-1β activation in the recipient cell. ASC specks appear in bodily fluids from inflamed tissues and autoantibodies against ASC specks develop in patients and animals with autoimmune pathologies. Together, these findings reveal extracellular functions of ASC specks and a novel form of cell-to-cell communication.
PMCID: PMC4116676  PMID: 24952505
3.  Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodial-derived hemozoin and DNA during malaria 
Cell reports  2014;6(1):196-210.
Hemozoin (Hz) is the crystalline detoxification product of hemoglobin in plasmodial-infected erythrocytes. We previously proposed that Hz can carry plasmodial DNA into a subcellular compartment accessible to Toll-like receptor 9 (TLR9), inducing an inflammatory signal. Hemozoin also activates the NLRP3 inflammasome in primed cells. We found that Hz appears to co localize with DNA in infected erythrocytes, even prior to RBC rupture or phagolysosomal digestion. Using synthetic Hz coated in vitro with plasmodial genomic DNA (gDNA) or CpG-oligonucleotides, we observed that DNA-complexed Hz induced TLR9 translocation, providing a priming and an activation signal for inflammasomes. After phagocytosis, Hz and DNA dissociate. Hz subsequently induces phagolysosomal destabilization, allowing phagolysosomal contents access to the cytosol where DNA receptors become activated. Similar observations were made with plasmodial-infected RBC. Finally, infected erythrocytes activated both the NLRP3 and AIM2 inflammasomes. These observations suggest that Hz and DNA work together to induce systemic inflammation during malaria.
PMCID: PMC4105362  PMID: 24388751
4.  Optimization of transcription factor binding map accuracy utilizing knockout-mouse models 
Nucleic Acids Research  2014;42(21):13051-13060.
Genome-wide assessment of protein–DNA interaction by chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) is a key technology for studying transcription factor (TF) localization and regulation of gene expression. Signal-to-noise-ratio and signal specificity in ChIP-seq studies depend on many variables, including antibody affinity and specificity. Thus far, efforts to improve antibody reagents for ChIP-seq experiments have focused mainly on generating higher quality antibodies. Here we introduce KOIN (knockout implemented normalization) as a novel strategy to increase signal specificity and reduce noise by using TF knockout mice as a critical control for ChIP-seq data experiments. Additionally, KOIN can identify ‘hyper ChIPable regions’ as another source of false-positive signals. As the use of the KOIN algorithm reduces false-positive results and thereby prevents misinterpretation of ChIP-seq data, it should be considered as the gold standard for future ChIP-seq analyses, particularly when developing ChIP-assays with novel antibody reagents.
PMCID: PMC4245947  PMID: 25378309
5.  Overexpression of Membrane-bound Fas Ligand (CD95L) Exacerbates Autoimmune Disease and Renal Pathology in Pristane-induced Lupus 
Loss of function mutations in the Fas death receptor or its ligand result in a lymphoproliferative syndrome and exacerbate clinical disease in most lupus-prone strains of mice. One exception is mice injected with 2,6,10,14-Tetramethylpentadecane (TMPD), a hydrocarbon oil commonly known as pristane, which induces SLE-like disease. While Fas/FasL interactions have been strongly implicated in the activation induced cell death of both lymphocytes and other antigen presenting cells, FasL can also trigger the production of pro-inflammatory cytokines. FasL is a transmembrane protein with a matrix metalloproteinase (MMP) cleavage site in the ectodomain. MMP cleavage inactivates membrane-bound FasL (mFasL) and releases a soluble form, sFasL, reported to have both antagonist and agonist activity. To better understand the impact of FasL cleavage on both the pro-apoptotic and proinflammatory activity of FasL, its cleavage site was deleted through targeted mutation, to produce the ΔCS mouse line. ΔCS mice express higher levels of mFasL than WT mice and fail to release sFasL. To determine to what extent FasL promotes inflammation in lupus mice, TMPD-injected FasL-deficient and ΔCS BALB/c mice were compared to control TMPD-injected BALB/c mice. We found that FasL-deficiency significantly reduced the early inflammatory exudate induced by TMPD injection. By contrast, ΔCS mice developed a markedly exacerbated disease profile associated with a higher frequency of splenic neutrophils and macrophages, a profound change in ANA specificity, and markedly increased proteinuria and kidney pathology, compared to controls. These results demonstrate that FasL promotes inflammation in TMPD-induced autoimmunity, and its cleavage limits FasL pro-inflammatory activity.
PMCID: PMC4219920  PMID: 23918976
6.  Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP 
Nature  2013;503(7477):530-534.
The innate immune defence of multicellular organisms against microbial pathogens requires cellular collaboration. Information exchange allowing immune cells to collaborate is generally attributed to soluble protein factors secreted by pathogen-sensing cells. Cytokines, such as type I interferons (IFNs), serve to alert non-infected cells to the possibility of pathogen challenge1. Moreover, in conjunction with chemokines they can instruct specialized immune cells to contain and eradicate microbial infection. Several receptors and signalling pathways exist that couple pathogen sensing to the induction of cytokines, whereas cytosolic recognition of nucleic acids seems to be exquisitely important for the activation of type I IFNs, master regulators of antiviral immunity2. Cytosolic DNA is sensed by the receptor cyclic GMP-AMP (cGAMP) synthase (cGAS), which catalyses the synthesis of the second messenger cGAMP(2′-5′)3, 4, 5, 6, 7, 8. This molecule in turn activates the endoplasmic reticulum (ER)-resident receptor STING9, 10, 11, thereby inducing an antiviral state and the secretion of type I IFNs. Here we find in murine and human cells that cGAS-synthesized cGAMP(2′-5′) is transferred from producing cells to neighbouring cells through gap junctions, where it promotes STING activation and thus antiviral immunity independently of type I IFN signalling. In line with the limited cargo specificity of connexins, the proteins that assemble gap junction channels, most connexins tested were able to confer this bystander immunity, thus indicating a broad physiological relevance of this local immune collaboration. Collectively, these observations identify cGAS-triggered cGAMP(2′-5′) transfer as a novel host strategy that serves to rapidly convey antiviral immunity in a transcription-independent, horizontal manner.
PMCID: PMC4142317  PMID: 24077100
7.  iGLuc: a luciferase-based inflammasome and protease activity reporter 
Nature methods  2013;10(2):147-154.
Measurement of protease activity in living cells or organisms remains a challenging task. We here present a transgene-encoded biosensor that reports the proteolytic activity of caspase-1 in the course of inflammasome activation and that of other proteases in a highly sensitive and specific manner. This protease reporter is based on the biological activity of a pro-interleukin (IL)-1β-Gaussia luciferase (iGLuc) fusion construct, in which pro-IL-1β-dependent formation of protein aggregates renders GLuc enzyme inactive. Cleavage leads to monomerization of this biosensor protein, resulting in a strong gain in luciferase activity. Exchange of the canonical caspase-1 cleavage site in this reporter construct allows the generation of protease biosensors with additional specificities. The high sensitivity, signal-to-background ratio and specificity of the iGLuc system renders it a useful tool to study proteolytic events in mouse and human cells at high throughput and to monitor protease activity in mice in vivo.
PMCID: PMC4127477  PMID: 23291722
8.  High density lipoprotein mediates anti-inflammatory transcriptional reprogramming of macrophages via the transcriptional repressor ATF3 
Nature immunology  2013;15(2):152-160.
High Density Lipoprotein (HDL) mediates reverse cholesterol transport and it is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional repressor ATF3, as an HDL-inducible target gene in macrophages that down-regulates the expression of Toll-like receptor (TLR)-induced pro-inflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of novel HDL-based therapies.
PMCID: PMC4009731  PMID: 24317040
10.  RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA 
The Journal of Experimental Medicine  2013;210(11):2447-2463.
Receptor for advanced glycation end-products (RAGE) detects nucleic acids and promotes DNA uptake into endosomes, which in turn lowers the immune recognition threshold for TLR9 activation.
Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE–DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo.
PMCID: PMC3804942  PMID: 24081950
11.  Cholesterol Crystals and Inflammation 
Chronic vascular inflammation is regarded to have a key role in cardiovascular disease. However, the elicitors of this inflammatory response in the vessel wall are currently not well understood. Excessive amounts of cholesterol, an abundant and fundamental lipid molecule in mammalian cells, can trigger the development and progression of atherosclerosis. Accumulation of cholesterol in early atherosclerotic lesions results in the formation of macrophage foam cells, and crystalline cholesterol is found as a hallmark of advanced atherosclerotic plaques. Cholesterol crystals can activate a multimolecular signaling complex of the innate immune system, the NLRP3 inflammasome, resulting in a caspase-1 mediated activation and secretion of proinflammatory interleukin-1 family cytokines. Furthermore, crystalline cholesterol is thought to induce plaque rupture by physical disruption of the fibrous cap covering atherosclerotic lesions. Here we review the role of cholesterol deposition and crystallization for inflammatory responses in cardiovascular diseases.
PMCID: PMC3623938  PMID: 23412688
Cholesterol crystals; Inflammation; NLRP3 inflammasome; Atherosclerosis; Cardiovascular disease; Serum proteins
12.  Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation 
Immunity  2014;40(2):274-288.
Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.
Graphical Abstract
•Macrophages react with specific transcriptional programming upon distinct signals•Activation by TNF, PGE2, and P3C activates a STAT4-associated transcriptional program•NFKB1, JUNB, and CREB1 are central transcription factors of macrophage activation•Inflammatory signatures are lost in alveolar macrophages from COPD patients
PMCID: PMC3991396  PMID: 24530056
13.  PKR stirs up inflammasomes 
Cell Research  2012;23(2):168-170.
PMCID: PMC3567816  PMID: 22945351
14.  CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation 
Nature immunology  2013;14(8):812-820.
Particulate ligands including cholesterol crystals and amyloid fibrils induce NLRP3-dependent production of interleukin-1β (IL-1β) in atherosclerosis, Alzheimer's disease and diabetes. Soluble endogenous ligands including oxidized-LDL, amyloid-β and amylin peptides accumulate in these diseases. Here we identify a CD36-mediated endocytic pathway that coordinates the intracellular conversion of these soluble ligands to crystals or fibrils, resulting in lysosomal disruption and NLRP3-inflammasome activation. Consequently, macrophages lacking CD36 failed to elicit IL-1β production in response to these ligands and targeting CD36 in atherosclerotic mice reduced serum IL-1β and plaque cholesterol crystal accumulation. Collectively, these findings highlight the importance of CD36 in the accrual and nucleation of NLRP3 ligands from within the macrophage and position CD36 as a central regulator of inflammasome activation in sterile inflammation.
PMCID: PMC3720827  PMID: 23812099
15.  Critical functions of priming and lysosomal damage for NLRP3 activation 
European journal of immunology  2010;40(3):620-623.
Inflammasomes are cytosolic multi-protein complexes that form in response to infectious or injurious challenges. Inflammasomes control the activity of caspase-1, which is essential for the maturation and release of IL-1b family cytokines. The NLRP1, IPAF and AIM2 inflammasomes recognize specific substances, while the NLRP3 inflammasome responds to many structurally and chemically diverse triggers. Here, we discuss the critical roles of priming and lysosomal damage in NLRP3 inflammasome activation.
PMCID: PMC3893565  PMID: 20201015
Inflammasome; NLRP3; IL-1b
16.  Intracellular sensing of microbes and danger signals by the inflammasomes 
Immunological reviews  2011;243(1):119-135.
The cells of the innate immune system mobilize a coordinated immune response towards invading microbes and after disturbances in tissue homeostasis. These immune responses typically lead to infection control and tissue repair. Exaggerated or uncontrolled immune responses, however, can also induce acute of chronic inflammatory pathologies that are characteristic for many common diseases such as sepsis, arthritis, atherosclerosis or Alzheimer’s disease. In recent years the concerted efforts of many scientists have uncovered numerous mechanisms by which immune cells detect foreign or changed self-substances that appear in infections or during tissue damage. These substances stimulate signaling receptors, which leads to cellular activation and the induction of effector mechanisms. Here, we review the role of inflammasomes, a family of signaling molecules that form multi-molecular signaling platforms and activate inflammatory caspases and IL-1β cytokines.
PMCID: PMC3893570  PMID: 21884172
Monocytes/Macrophages < Cell Lineages and Subsets; Neutrophils < Cell Lineages and Subsets; Toll-like Receptors/Pattern Recognition Receptors < Molecules; Inflammation < Processes; Adapter proteins < Molecules; Lipopolysaccharide < Molecules
17.  RIG-I dependent sensing of poly(dA-dT) via the induction of an RNA polymerase III transcribed RNA intermediate 
Nature immunology  2009;10(10):10.1038/ni.1779.
Viral RNA is sensed by TLR 7 and 8 or by the RNA helicases LGP2, MDA5 and RIG-I to trigger antiviral responses. Much less is known about sensors for DNA. Here we identify a novel DNA sensing pathway involving RNA polymerase III and RIG-I. AT-rich dsDNA serve as a template for RNA polymerase III, which is transcribed into dsRNA harboring a 5′ triphosphate moiety which signals via RIG-I to activate type I IFN gene transcription and NF-κB. This pathway is also important in sensing Epstein-Barr virus encoded small RNAs, which are transcribed by RNA polymerase III and then trigger RIG-I activation. Thus, RNA Pol III and RIG-I play a pivotal role in coordinating anti-viral defenses in the innate immune response.
PMCID: PMC3878616  PMID: 19609254
18.  FAS mediates non-canonical IL-1β and IL-18 maturation via caspase-8 in a Rip3-independent manner1 
Fas, a tumor necrosis factor family receptor, is activated by the membrane protein Fas ligand (FasL) expressed on various immune cells. Fas signaling triggers apoptosis and induces inflammatory cytokine production. Among the Fas induced cytokines, the IL-1β family cytokines require proteolysis to gain biological activity. Inflammasomes, which respond to pathogens and danger signals, cleave IL-1β cytokines via caspase-1. The mechanisms, by which Fas regulates IL-1β activation, however, remain unresolved. Here, we demonstrate that macrophages exposed to TLR ligands upregulate Fas, which renders them responsive to receptor engagement by Fas ligand. Fas signaling activates caspase-8 in macrophages and dendritic cells leading to the maturation of IL-1β and IL-18 independently of inflammasomes or Rip3. Hence, Fas controls a novel non-canonical IL-1β activation pathway in myeloid cells, which could play an essential role in inflammatory processes, tumor surveillance and control of infectious diseases.
PMCID: PMC3518757  PMID: 23144495
19.  Noncanonical Autophagy Is Required for Type I Interferon Secretion in Response to DNA-Immune Complexes 
Immunity  2012;37(6):986-997.
Toll-like receptor-9 (TLR9) is largely responsible for discriminating self from pathogenic DNA. However, association of host DNA with autoantibodies activates TLR9, inducing the pathogenic secretion of type I interferons (IFNs) from plasmacytoid dendritic cells (pDCs). Here, we found that in response to DNA-containing immune complexes (DNA-IC), but not to soluble ligands, IFN-α production depended upon the convergence of the phagocytic and autophagic pathways, a process called microtubule-associated protein 1A/1B-light chain 3 (LC3)-associated phagocytosis (LAP). LAP was required for TLR9 trafficking into a specialized interferon signaling compartment by a mechanism that involved autophagy-related proteins, but not the conventional autophagic preinitiation complex, or adaptor protein-3 (AP-3). Our findings unveil a new role for nonconventional autophagy in inflammation and provide one mechanism by which anti-DNA autoantibodies, such as those found in several autoimmune disorders, bypass the controls that normally restrict the apportionment of pathogenic DNA and TLR9 to the interferon signaling compartment.
PMCID: PMC3786711  PMID: 23219390
20.  NLRP3 is activated in Alzheimer´s disease and contributes to pathology in APP/PS1 mice 
Nature  2012;493(7434):10.1038/nature11729.
Alzheimer´s Disease (AD) is the world’s most common dementing illness. Deposition of amyloid beta peptide (Aβ) drives cerebral neuroinflammation by activating microglia1,2. Indeed, Aβ activation of the NLRP3 inflammasome in microglia is fundamental for IL-1β maturation and subsequent inflammatory events3. However, it remains unknown whether NLRP3 activation contributes to AD in vivo. Here, we demonstrate strongly enhanced active caspase-1 expression in human MCI and AD brains suggesting a role for the inflammasome in this neurodegenerative disease. NLRP3−/− or caspase-1−/− mice carrying mutations associated with familiar AD were largely protected from loss of spatial memory and other AD-associated sequelae and demonstrated reduced brain caspase-1 and IL-1β activation as well as enhanced Aβ clearance. Furthermore, NLRP3 inflammasome deficiency skewed microglial cells to an M2 phenotype and resulted in the decreased deposition of Aβ in the APP/PS1 model of Alzheimer’s disease. These results reveal an important role for the NLRP3 / caspase-1 axis in AD pathogenesis, and suggest that NLRP3 inflammasome inhibition represents a novel therapeutic intervention for AD.
PMCID: PMC3812809  PMID: 23254930
21.  Activation and regulation of the inflammasomes 
Nature reviews. Immunology  2013;13(6):10.1038/nri3452.
Inflammasomes are key signalling platforms that detect pathogenic microorganisms and sterile stressors, and that activate the highly pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. In this Review, we discuss the complex regulatory mechanisms that facilitate a balanced but effective inflammasome-mediated immune response, and we highlight the similarities to another molecular signalling platform — the apoptosome — that monitors cellular health. Extracellular regulatory mechanisms are discussed, as well as the intracellular control of inflammasome assembly, for example, via ion fluxes, free radicals and autophagy
PMCID: PMC3807999  PMID: 23702978
22.  HIV Type 1 Infection Up-Regulates TLR2 and TLR4 Expression and Function in Vivo and in Vitro 
AIDS Research and Human Retroviruses  2012;28(10):1313-1328.
Toll-like receptors (TLRs) play a critical role in innate immunity against pathogens. Their stimulation induces the activation of NF-κB, an important inducer of HIV-1 replication. In recent years, an increasing number of studies using several cells types from HIV-infected patients indicate that TLRs play a key role in regulating the expression of proinflammatory cytokines and viral pathogenesis. In the present study, the effect of HIV-1 stimulation of monocyte-derived macrophage (MDM) and peripheral blood mononuclear cell (PBMC) subpopulations from healthy donors on the expression and functions of TLR2 and TLR4 was examined. In addition, and to complete the in vitro study, the expression pattern of TLR2 and TLR4 in 49 HIV-1-infected patients, classified according to viral load and the use of HAART, was determined and compared with 25 healthy subjects. An increase of TLR expression and production of proinflammatory cytokines were observed in MDMs and PBMCs infected with HIV-1 in vitro and in response to TLR stimulation, compared to the mock. In addition, an association between TLR expression and up-regulation of CD80 in plasmacytoid dendritic cells (pDCs) was observed. The ex vivo analysis indicated increased expression of TLR2 and TLR4 in myeloid dendritic cells (mDCs), but only of TLR2 in monocytes obtained from HIV-1-infected patients, compared to healthy subjects. Remarkably, the expression was higher in cells from patients who do not use HAART. In monocytes, there was a positive correlation between both TLRs and viral load, but not CD4+ T cell numbers. Together, our in vitro and ex vivo results suggest that TLR expression and function can be up-regulated in response to HIV-1 infection and could affect the inflammatory response. We propose that modulation of TLRs represents a mechanism to promote HIV-1 replication or AIDS progression in HIV-1-infected patients.
PMCID: PMC3482876  PMID: 22280204
23.  TLR-Independent Type I Interferon Induction in Response to an Extracellular Bacterial Pathogen via Intracellular Recognition of Its DNA 
Cell host & microbe  2008;4(6):543-554.
Type I interferon (IFN) is an important host defense cytokine against intracellular pathogens, mainly viruses. In assessing IFN production in response to group B streptococcus (GBS), we find that IFN-β was produced by macrophages upon stimulation with both heat-killed and live GBS. Exposure of macrophages to heat-killed GBS activated a Toll-like receptor (TLR)-dependent pathway, whereas live GBS activated a TLR/NOD/RIG-like receptor (RLR)-independent pathway. This latter pathway required bacterial phagocytosis, proteolytic bacterial degradation, and phagolysosomal membrane destruction by GBS pore-forming toxins, leading to the release of bacterial DNA into the cytosol. GBS DNA in the cytosol induced IFN-β production via a pathway dependent on the activation of the serine-threonine kinase TBK1 and phosphorylation of the transcription factor IRF3. Thus, activation of IFN-α/-β production during infection with GBS, commonly considered an extracellular pathogen, appears to result from the interaction of GBS DNA with a putative intracellular DNA sensor or receptor.
PMCID: PMC3727391  PMID: 19064255
24.  IL-1, quo vadis ? 
Atherosclerosis  2012;222(2):324-325.
PMCID: PMC3623936  PMID: 22513052
25.  Activation of the NLRP3 Inflammasome by IAV Virulence Protein PB1-F2 Contributes to Severe Pathophysiology and Disease 
PLoS Pathogens  2013;9(5):e1003392.
The ability for a host to recognize infection is critical for virus clearance and often begins with induction of inflammation. The PB1-F2 of pathogenic influenza A viruses (IAV) contributes to the pathophysiology of infection, although the mechanism for this is unclear. The NLRP3-inflammasome has been implicated in IAV pathogenesis, but whether IAV virulence proteins can be activators of the complex is unknown. We investigated whether PB1-F2-mediated activation of the NLRP3-inflammasome is a mechanism contributing to overt inflammatory responses to IAV infection. We show PB1-F2 induces secretion of pyrogenic cytokine IL-1β by activating the NLRP3-inflammasome, contributing to inflammation triggered by pathogenic IAV. Compared to infection with wild-type virus, mice infected with reverse engineered PB1-F2-deficient IAV resulted in decreased IL-1β secretion and cellular recruitment to the airways. Moreover, mice exposed to PB1-F2 peptide derived from pathogenic IAV had enhanced IL-1β secretion compared to mice exposed to peptide derived from seasonal IAV. Implicating the NLRP3-inflammasome complex specifically, we show PB1-F2 derived from pathogenic IAV induced IL-1β secretion was Caspase-1-dependent in human PBMCs and NLRP3-dependent in mice. Importantly, we demonstrate PB1-F2 is incorporated into the phagolysosomal compartment, and upon acidification, induces ASC speck formation. We also show that high molecular weight aggregated PB1-F2, rather than soluble PB1-F2, induces IL-1β secretion. Furthermore, NLRP3-deficient mice exposed to PB1-F2 peptide or infected with PB1-F2 expressing IAV were unable to efficiently induce the robust inflammatory response as observed in wild-type mice. In addition to viral pore forming toxins, ion channel proteins and RNA, we demonstrate inducers of NLRP3-inflammasome activation may include disordered viral proteins, as exemplified by PB1-F2, acting as host pathogen ‘danger’ signals. Elucidating immunostimulatory PB1-F2 mediation of NLRP3-inflammasome activation is a major step forward in our understanding of the aetiology of disease attributable to exuberant inflammatory responses to IAV infection.
Author Summary
Influenza virus is a highly contagious respiratory pathogen that can cause pandemics, resulting in the deaths of millions worldwide. Previously we demonstrated that PB1-F2 protein produced by pathogenic influenza induces overwhelming inflammatory responses to infection, which enhances disease. The way in which PB1-F2 causes this overt inflammation is unclear. Recently, influenza virus was shown to be involved in activating the inflammasome, which plays a pivotal role during inflammatory responses to infection. However, whether virulence factors such as PB1-F2 produced by the virus can play a role in activation of the inflammasome is unknown. Here, we investigated whether PB1-F2 could have a role in activation of the inflammasome. Using detection of the inflammatory cytokine IL-1β as a marker for inflammasome complex activation, we definitively show PB1-F2 from a pathogenic strain rapidly induces activation of the inflammasome in humans and mice. Using macrophages from mice lacking components of the inflammasome complex, induction of inflammation was shown to be Caspase-1 and NLRP3-dependent. Inflammation induced by PB1-F2 was abrogated in NLRP3-deficient mice. To our knowledge, this is the first description of the mechanism of PB1-F2-mediated inflammasome complex activation. Our work provides further understanding of the contribution of PB1-F2 to enhancing inflammation during influenza infections.
PMCID: PMC3667782  PMID: 23737748

Results 1-25 (53)