PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Early Changes by 18Fluorodeoxyglucose Positron Emission Tomography Coregistered with Computed Tomography Predict Outcome after Mycobacterium tuberculosis Infection in Cynomolgus Macaques 
Infection and Immunity  2014;82(6):2400-2404.
Cynomolgus macaques infected with low-dose Mycobacterium tuberculosis develop both active tuberculosis and latent infection similar to those of humans, providing an opportunity to study the clinically silent early events in infection. 18Fluorodeoxyglucose radiotracer with positron emission tomography coregistered with computed tomography (FDG PET/CT) provides a noninvasive method to measure disease progression. We sought to determine temporal patterns of granuloma evolution that distinguished active-disease and latent outcomes. Macaques (n = 10) were infected with low-dose M. tuberculosis with FDG PET/CT performed during infection. At 24 weeks postinfection, animals were classified as having active disease (n = 3) or latent infection (n = 6), with one “percolator” monkey. Imaging characteristics (e.g., lesion number, metabolic activity, size, mineralization, and distribution of lesions) were compared among active and latent groups. As early as 3 weeks postinfection, more pulmonary granulomas were observed in animals that would later develop active disease than in those that would develop latent infection. Over time, new lesions developed in active-disease animals but not in latent animals. Granulomas and mediastinal lymph nodes from active-disease but not latent animals consistently increased in metabolic activity at early time points. The presence of fewer lesions at 3 weeks and the lack of new lesion development in animals with latent infection suggest that innate and rapid adaptive responses are critical to preventing active tuberculosis. A greater emphasis on innate responses and/or rapid recruitment of adaptive responses, especially in the airway, should be emphasized in newer vaccine strategies.
doi:10.1128/IAI.01599-13
PMCID: PMC4019174  PMID: 24664509
2.  The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection  
It is estimated that one-third of the world’s population is infected with Mycobacterium tuberculosis. Infection typically remains latent, but it can reactivate to cause clinical disease. The only vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is largely ineffective, and ways to enhance its efficacy are being developed. Of note, the candidate booster vaccines currently under clinical development have been designed to improve BCG efficacy but not prevent reactivation of latent infection. Here, we demonstrate that administering a multistage vaccine that we term H56 in the adjuvant IC31 as a boost to vaccination with BCG delays and reduces clinical disease in cynomolgus macaques challenged with M. tuberculosis and prevents reactivation of latent infection. H56 contains Ag85B and ESAT-6, which are two of the M. tuberculosis antigens secreted in the acute phase of infection, and the nutrient stress–induced antigen Rv2660c. Boosting with H56/IC31 resulted in efficient containment of M. tuberculosis infection and reduced rates of clinical disease, as measured by clinical parameters, inflammatory markers, and improved survival of the animals compared with BCG alone. Boosted animals showed reduced pulmonary pathology and extrapulmonary dissemination, and protection correlated with a strong recall response against ESAT-6 and Rv2660c. Importantly, BCG/H56-vaccinated monkeys did not reactivate latent infection after treatment with anti-TNF antibody. Our results indicate that H56/IC31 boosting is able to control late-stage infection with M. tuberculosis and contain latent tuberculosis, providing a rationale for the clinical development of H56.
doi:10.1172/JCI46252
PMCID: PMC3248283  PMID: 22133873
3.  Variability in Tuberculosis Granuloma T Cell Responses Exists, but a Balance of Pro- and Anti-inflammatory Cytokines Is Associated with Sterilization 
PLoS Pathogens  2015;11(1):e1004603.
Lung granulomas are the pathologic hallmark of tuberculosis (TB). T cells are a major cellular component of TB lung granulomas and are known to play an important role in containment of Mycobacterium tuberculosis (Mtb) infection. We used cynomolgus macaques, a non-human primate model that recapitulates human TB with clinically active disease, latent infection or early infection, to understand functional characteristics and dynamics of T cells in individual granulomas. We sought to correlate T cell cytokine response and bacterial burden of each granuloma, as well as granuloma and systemic responses in individual animals. Our results support that each granuloma within an individual host is independent with respect to total cell numbers, proportion of T cells, pattern of cytokine response, and bacterial burden. The spectrum of these components overlaps greatly amongst animals with different clinical status, indicating that a diversity of granulomas exists within an individual host. On average only about 8% of T cells from granulomas respond with cytokine production after stimulation with Mtb specific antigens, and few “multi-functional” T cells were observed. However, granulomas were found to be “multi-functional” with respect to the combinations of functional T cells that were identified among lesions from individual animals. Although the responses generally overlapped, sterile granulomas had modestly higher frequencies of T cells making IL-17, TNF and any of T-1 (IFN-γ, IL-2, or TNF) and/or T-17 (IL-17) cytokines than non-sterile granulomas. An inverse correlation was observed between bacterial burden with TNF and T-1/T-17 responses in individual granulomas, and a combinatorial analysis of pair-wise cytokine responses indicated that granulomas with T cells producing both pro- and anti-inflammatory cytokines (e.g. IL-10 and IL-17) were associated with clearance of Mtb. Preliminary evaluation suggests that systemic responses in the blood do not accurately reflect local T cell responses within granulomas.
Author Summary
The characteristic feature of Mycobacterium tuberculosis (Mtb) infection is the formation of lesions, which are organized structures of immune cells in the lungs called granulomas, which contain the bacteria. When the granuloma functions effectively, it can kill the bacteria. T cells (a type of immune cell, also present in granulomas) are known to play an important role in control of tuberculosis. However, functions of T cells at individual granuloma levels are unknown. Here, we studied the functional characteristics of T cells, which are defined by the production of chemical messengers (cytokines) at the granuloma level in a non-human primate model. We compared the relationship between cytokine response and the number of bacteria (Mtb) in each granuloma. Each granuloma was found to be unique, suggesting different types exist within an animal. Only a small proportion of T cells produced any cytokine, but different types of cytokines were observed within each granuloma. A balance between different types of cytokine was associated with more killing of bacteria in granulomas. Understanding how to improve the T cell responses to obtain killing of bacteria in the granuloma will be important for vaccine development.
doi:10.1371/journal.ppat.1004603
PMCID: PMC4303275  PMID: 25611466
4.  Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms 
Macrophages in granulomas are both anti-mycobacterial effector and host cell for Mycobacterium tuberculosis(M.tb), yet basic aspects of macrophage diversity and function within the complex structures of granulomas remain poorly understood. To address this, we examined myeloid cell phenotypes and expression of enzymes correlated with host defense in macaque and human granulomas. Macaque granulomas had upregulated inducible and endothelial nitric oxide synthase (iNOS and eNOS) and arginase (Arg1 and Arg2) expression and enzyme activity compared to non-granulomatous tissue. Immunohistochemical analysis indicated macrophages adjacent to uninvolved normal tissue were more likely to express CD163, while epithelioid macrophages in regions where bacteria reside strongly expressed CD11c, CD68 and HAM56. Calprotectin-positive neutrophils were abundant in regions adjacent to caseum. iNOS, eNOS, Arg1 and Arg2 proteins were identified in macrophages and localized similarly in granulomas across species, with greater eNOS expression and ratio of iNOS:Arg1 expression in epithelioid macrophages, as compared to cells in the lymphocyte cuff. iNOS, Arg1 and Arg2 expression in neutrophils was also identified. The combination of phenotypic and functional markers support that macrophages with anti-inflammatory phenotypes localized to outer regions of granulomas while the inner regions were more likely to contain macrophages with pro-inflammatory, presumably bactericidal, phenotypes. Together these data support the concept that granulomas have organized microenvironments that balance anti-microbial anti-inflammatory responses to limit pathology in the lungs.
doi:10.4049/jimmunol.1300113
PMCID: PMC3746594  PMID: 23749634
5.  Sterilization of granulomas is common in both active and latent tuberculosis despite extensive within-host variability in bacterial killing 
Nature medicine  2013;20(1):75-79.
Over 30% of the world’s population is infected with Mycobacterium tuberculosis (Mtb), yet only ~5–10% will develop clinical disease1. Despite considerable effort, we understand little about what distinguishes individuals who progress to active tuberculosis (TB) from those who remain latent for decades. The variable course of disease is recapitulated in cynomolgus macaques infected with Mtb2. Active disease in macaques is defined by clinical, microbiologic and immunologic signs and occurs in ~45% of animals, while the remaining are clinically asymptomatic2,3. Here, we use barcoded Mtb isolates and quantitative measures of culturable and cumulative bacterial burden to show that most lesions are likely founded by a single bacterium and reach similar maximum burdens. Despite common origins, the fate of individual lesions varies substantially within the same host. Strikingly, in active disease, the host sterilizes some lesions even while others progress. Our data suggest that lesional heterogeneity arises, in part, through differential killing of bacteria after the onset of adaptive immunity. Thus, individual lesions follow diverse and overlapping trajectories, suggesting critical responses occur at a lesional level to ultimately determine the clinical outcome of infection. Defining the local factors that dictate outcome will be important in developing effective interventions to prevent active TB.
doi:10.1038/nm.3412
PMCID: PMC3947310  PMID: 24336248
6.  Radiologic Responses in Cynomolgus Macaques for Assessing Tuberculosis Chemotherapy Regimens 
Trials to test new drugs currently in development against tuberculosis in humans are impractical. All animal models to prioritize new regimens are imperfect, but nonhuman primates (NHPs) infected with Mycobacterium tuberculosis develop active tuberculosis (TB) disease with a full spectrum of lesion types seen in humans. Serial 2-deoxy-2-[18F]-fluoro-d-glucose (FDG) positron emission tomography (PET) with computed tomography (CT) imaging was performed on cynomolgus macaques during infection and chemotherapy with individual agents or the four-drug combination therapy most widely used globally. The size and metabolic activity of lung granulomas varied among animals and even within a single animal during development of disease. Individual granulomas within untreated animals had highly local and independent outcomes, some progressing in size and FDG uptake, while others waned, illustrating the highly dynamic nature of active TB. At necropsy, even untreated animals were found to have a proportion of sterile lesions consistent with the dynamics of this infection. A more marked reduction in overall metabolic activity in the lungs (decreased FDG uptake) was associated with effective treatment. A reduction in the size of individual lesions correlated with a lower bacterial burden at necropsy. Isoniazid treatment was associated with a transient increase in metabolic activity in individual lesions, whereas a net reduction occurred in most lesions from rifampin-treated animals. Quadruple-drug therapy resulted in the highest decrease in FDG uptake. The findings of PET-CT imaging may provide an important early correlate of the efficacy of novel combinations of new drugs that can be directly translated to human clinical trials.
doi:10.1128/AAC.00277-13
PMCID: PMC3754323  PMID: 23796926
7.  Differential Virulence and Disease Progression following Mycobacterium tuberculosis Complex Infection of the Common Marmoset (Callithrix jacchus) 
Infection and Immunity  2013;81(8):2909-2919.
Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades.
doi:10.1128/IAI.00632-13
PMCID: PMC3719573  PMID: 23716617
8.  CD4 T Cell Depletion Exacerbates Acute Mycobacterium tuberculosis While Reactivation of Latent Infection Is Dependent on Severity of Tissue Depletion in Cynomolgus Macaques 
AIDS Research and Human Retroviruses  2012;28(12):1693-1702.
Abstract
CD4 T cells are believed to be important in protection against Mycobacterium tuberculosis, but the relative contribution to control of initial or latent infection is not known. Antibody-mediated depletion of CD4 T cells in M. tuberculosis-infected cynomolgus macaques was used to study the role of CD4 T cells during acute and latent infection. Anti-CD4 antibody severely reduced levels of CD4 T cells in blood, airways, and lymph nodes. Increased pathology and bacterial burden were observed in CD4-depleted monkeys during the first 8 weeks of infection compared to controls. CD4-depleted monkeys had greater interferon (IFN)-γ expression and altered expression of CD8 T cell activation markers. During latent infection, CD4 depletion resulted in clinical reactivation in only three of six monkeys. Reactivation was associated with lower CD4 T cells in the hilar lymph nodes. During both acute and latent infection, CD4 depletion was associated with reduced percentages of CXCR3+ expressing CD8 T cells, reported to be involved in T cell recruitment, regulatory function, and effector and memory T cell maturation. CXCR3+ CD8 T cells from hilar lymph nodes had more mycobacteria-specific cytokine expression and greater coexpression of multiple cytokines compared to CXCR3− CD8 T cells. CD4 T cells are required for protection against acute infection but reactivation from latent infection is dependent on the severity of depletion in the draining lymph nodes. CD4 depletion influences CD8 T cell function. This study has important implications for human HIV–M. tuberculosis coinfection.
doi:10.1089/aid.2012.0028
PMCID: PMC3505050  PMID: 22480184
9.  Changes in Streptococcus pneumoniae Serotype 19A Invasive Infections in Children from 1993 to 2011 
Journal of Clinical Microbiology  2013;51(4):1294-1297.
Among 594 Streptococcus pneumoniae serotype 19A invasive pneumococcal disease (IPD) isolates collected from 1993 to 2011, we identified 85 sequence types by multilocus sequence typing. CC320 was associated with multidrug resistance and reduced susceptibility to penicillin and ceftriaxone and still predominated among declining serotype 19A IPD isolates following PCV13 introduction.
doi:10.1128/JCM.00058-13
PMCID: PMC3666798  PMID: 23390277
10.  The mutation rate of mycobacterial repetitive unit loci in strains of M. tuberculosis from cynomolgus macaque infection 
BMC Genomics  2013;14:145.
Background
Mycobacterial interspersed repetitive units (MIRUs) are minisatellites within the Mycobacterium tuberculosis (Mtb) genome. Copy number variation (CNV) in MIRU loci is used for epidemiological typing, making the rate of variation important for tracking the transmission of Mtb strains. In this study, we developed and assessed a whole-genome sequencing (WGS) approach to detect MIRU CNV in Mtb. We applied this methodology to a panel of Mtb strains isolated from the macaque model of tuberculosis (TB), the animal model that best mimics human disease. From these data, we have estimated the rate of MIRU variation in the host environment, providing a benchmark rate for future epidemiologic work.
Results
We assessed variation at the 24 MIRU loci used for typing in a set of Mtb strains isolated from infected cynomolgus macaques. We previously performed WGS of these strains and here have applied both read depth (RD) and paired-end mapping (PEM) metrics to identify putative copy number variants. To assess the relative power of these approaches, all MIRU loci were resequenced using Sanger sequencing. We detected two insertion/deletion events both of which could be identified as candidates by PEM criteria. With these data, we estimate a MIRU mutation rate of 2.70 × 10-03 (95% CI: 3.30 × 10-04- 9.80 × 10-03) per locus, per year.
Conclusion
Our results represent the first experimental estimate of the MIRU mutation rate in Mtb. This rate is comparable to the highest previous estimates gathered from epidemiologic data and meta-analyses. Our findings allow for a more rigorous interpretation of data gathered from MIRU typing.
doi:10.1186/1471-2164-14-145
PMCID: PMC3635867  PMID: 23496945
Mycobacterium tuberculosis; Mycobacterial interspersed repetitive units; MIRU; Molecular epidemiology; Copy number variation; Whole-genome sequencing; Read depth; Paired-end mapping; Mutation rate
11.  Understanding Latent Tuberculosis: A Moving Target 
Tuberculosis (TB) remains a threat to the health of people worldwide. Infection with Mycobacterium tuberculosis can result in active TB or, more commonly, latent infection. Latently infected persons, of which there are estimated to be ~2 billion in the world, represent an enormous reservoir of potential reactivation TB, which can spread to other people. The immunology of TB is complex and multifaceted. Identifying the immune mechanisms that lead to control of initial infection and prevent reactivation of latent infection is crucial to combating this disease.
doi:10.4049/jimmunol.0903856
PMCID: PMC3311959  PMID: 20562268
12.  Comparison of the Effects of Pathogenic Simian Human Immunodeficiency Virus Strains SHIV-89.6P and SHIV-KU2 in Cynomolgus Macaques 
Factors explaining why human immunodeficiency virus (HIV) enhances the risk of reactivated tuberculosis (TB) are poorly understood. Unfortunately, experimental models of HIV-induced reactivated TB are lacking. We examined whether cynomolgus macaques, which accurately model latent TB in humans, could be used to model pathogenesis of HIV infection in the lungs and associated lymph nodes. These experiments precede studies modeling the effects of HIV infection on latent TB. We infected two groups of macaques with chimeric simian–human immunodeficiency viruses (SHIV-89.6P and SHIV-KU2) and followed viral titers and immunologic parameters including lymphocytes numbers and phenotype in the blood, bronchoalveolar lavage cells, and lymph nodes over the course of infection. Tissues from the lungs, liver, kidney, spleen, and lymph nodes were similarly examined at necropsy. Both strains produced dramatic CD4+ T cell depletion. Plasma titers were not different between viruses, but we found more SHIV-89.6P in the lungs. Both viruses induced similar patterns of cell activation markers. SHIV-89.6P induced more IFN-γ expression than SHIV-KU2. These results indicate SHIV-89.6P and SHIV-KU2 infect cynomolgus macaques and may be used to accurately model effects of HIV infection on latent TB.
doi:10.1089/aid.2007.0238
PMCID: PMC3311977  PMID: 18366326
13.  Simian Immunodeficiency Virus-Induced Changes in T Cell Cytokine Responses in Cynomolgus Macaques with Latent Mycobacterium tuberculosis Infection Are Associated with Timing of Reactivation 
Understanding the early immunologic events accompanying reactivated tuberculosis (TB) in HIV-infected individuals may yield insight into causes of reactivation and improve treatment modalities. We used the cynomolgus macaque (Macaca fascicularis) model of HIV–Mycobacterium tuberculosis coinfection to investigate the dynamics of multifunctional T cell responses and granuloma T cell phenotypes in reactivated TB. CD4+ and CD8+ T cells expressing Th1 cytokines (IFN-γ, IL-2, TNF) and Th2 cytokines (IL-4 and IL-10) were followed from latent M. tuberculosis infection to reactivation after coinfection with a pathogenic SIV. Coinfected animals experienced increased Th1 cytokine responses to M. tuberculosis Ags above the latent-response baseline 3–5 wk post-SIV infection that corresponded with peak plasma viremia. Th2 cytokine expression was not Ag specific, but strong, transient IL-4 expression was noted 4–7 wk post-SIV infection. Animals reactivating <17 wk post-SIV infection had significantly more multifunctional CD4+ T cells 3–5 wk post-SIV infection and more Th2-polarized and fewer Th0-, Th1-polarized CD8+ T cells during weeks 1–10 post-SIV infection than animals reactivating >26 wk post-SIV infection. Granuloma T cells included Th0-, Th1-, and Th2-polarized phenotypes but were particularly rich in cytolytic (CD107+) T cells. When combined with the changes in peripheral blood T cells, these factors indicate that events during acute HIV infection are likely to include distortions in proinflammatory and anti-inflammatory T cell responses within the granuloma that have significant effects on reactivation of latent TB. Moreover, it appears that mycobacteria-specific multifunctional T cells are better correlates of Ag load (i.e., disease status) than of protection.
doi:10.4049/jimmunol.1003773
PMCID: PMC3311978  PMID: 21317393
14.  Increase in Prevalence of Streptococcus pneumoniae Serotype 6C at Eight Children's Hospitals in the United States from 1993 to 2009▿ 
Journal of Clinical Microbiology  2011;49(6):2097-2101.
Streptococcus pneumoniae serotype 6C, which was described in 2007, causes invasive disease in adults and children. We investigated the prevalence of 6C among pediatric isolates obtained from eight children's hospitals in the United States. S. pneumoniae isolates were identified from a prospective multicenter study (1993 to 2009). Fifty-seven serotype 6C isolates were identified by multiplex PCR and/or Quellung reaction. Five were isolated before 2000, and the prevalence increased over time (P < 0.000001). The median patient age was 2.1 years (range, 0.2 to 22.5 years). Clinical presentations included bacteremia (n = 24), meningitis (n = 7), pneumonia (n = 4), abscess/wound (n = 3), mastoiditis (n = 2), cellulitis (n = 2), peritonitis (n = 1), septic arthritis (n = 1), otitis media (n = 10), and sinusitis (n = 3). By broth microdilution, 43/44 invasive serotype 6C isolates were susceptible to penicillin (median MIC, 0.015 μg/ml; range, 0.008 to 2 μg/ml); all were susceptible to ceftriaxone (median MIC, 0.015 μg/ml; range, 0.008 to 1 μg/ml). By disk diffusion, 16/44 invasive isolates (36%) were nonsusceptible to erythromycin, 19 isolates (43%) were nonsusceptible to trimethoprim-sulfamethoxazole (TMP-SMX), and all isolates were clindamycin susceptible. Multilocus sequence typing (MLST) revealed 24 sequence types (STs); 9 were new to the MLST database. The two main clonal clusters (CCs) were ST473 and single-locus variants (SLVs) (n = 13) and ST1292 and SLVs (n = 23). ST1292 and SLVs had decreased antibiotic susceptibility. Serotype 6C causes disease in children in the United States. Emerging CC1292 expressed TMP-SMX resistance and decreased susceptibility to penicillin and ceftriaxone. Continued surveillance is needed to monitor changes in serotype prevalence and possible emergence of antibiotic resistance in pediatric pneumococcal disease.
doi:10.1128/JCM.02207-10
PMCID: PMC3122777  PMID: 21450963
15.  Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection 
Nature genetics  2011;43(5):482-486.
Mycobacterium tuberculosis (Mtb) has generated a global health catastrophe that has been compounded by the emergence of drug resistant Mtb strains. We used whole genome sequencing to compare the accumulation of mutations in Mtb isolated from cynomolgus macaques with active, latent and reactivated disease. Based on the distribution of SNPs observed, we calculated the mutation rates for these disease states. Our data suggest that Mtb acquires a similar number of chromosomal mutations during latency as occurs during active disease or in a logarithmically growing culture over the same period of time despite reduced bacterial replication during latent infection. The pattern of polymorphisms suggests that the mutational burden in vivo is due to oxidative DNA damage. Thus, we demonstrate that Mtb continues to acquire mutations during latency and provide a novel explanation for the observation that isoniazid monotherapy for latent tuberculosis is a risk factor for the emergence of INH resistance1,2.
doi:10.1038/ng.811
PMCID: PMC3101871  PMID: 21516081
16.  TNF neutralization results in disseminated disease during acute and latent M. tuberculosis infection with normal granuloma structure 
Arthritis and rheumatism  2010;62(2):340-350.
An increased risk of tuberculosis has been documented in humans treated with tumor necrosis factor alpha (TNF) neutralizing agents. In murine models, impaired signaling by TNF caused exacerbation of both acute and chronic infection associated with aberrant granuloma formation and maintenance. The non-human primate model of tuberculosis provides an opportunity to study immune modulation in the setting of TNF neutralization during primary and latent tuberculosis. Administration of TNF neutralizing agents prior to M. tuberculosis infection resulted in fulminant and disseminated disease by 8 weeks post-infection. Neutralization of TNF in latently infected cynomolgus macaques caused reactivation in a majority of animals as determined by gross pathology and bacterial burden. A spectrum of dissemination was noted including extrapulmonary disease. Surprisingly, monkeys who developed primary and reactivation tuberculosis after TNF neutralization had similar granuloma structure and composition compared to active control monkeys. TNF neutralization was associated with increased IL-12, decreased CCL4, increased chemokine receptor expression and reduced mycobacteria-specific IFN-γ production in blood but not to the affected mediastinal lymph nodes. Finally, the first signs of reactivation often occurred in thoracic lymph nodes. These findings have important clinical implications for determining the mechanism of TNF-neutralization-related tuberculosis.
doi:10.1002/art.27271
PMCID: PMC3047004  PMID: 20112395
TNF; tuberculosis; non-human primate
17.  Quantitative Comparison of Active and Latent Tuberculosis in the Cynomolgus Macaque Model▿ †  
Infection and Immunity  2009;77(10):4631-4642.
We previously described that low-dose Mycobacterium tuberculosis infection in cynomolgus macaques results in a spectrum of disease similar to that of human infection: primary disease, latent infection, and reactivation tuberculosis (S. V. Capuano III, D. A. Croix, S. Pawar, A. Zinovik, A. Myers, P. L. Lin, S. Bissel, C. Fuhrman, E. Klein, and J. L. Flynn, Infect. Immun. 71:5831-5844, 2003). This is the only established model of latent infection, and it provides a unique opportunity to understand host and pathogen differences across of range of disease states. Here, we provide a more extensive and detailed characterization of the gross pathology, microscopic histopathology, and immunologic characteristics of monkeys in each clinical disease category. The data underscore the similarities between human and nonhuman primate M. tuberculosis infection. Furthermore, we describe novel methods of quantifying gross pathology and bacterial burden that distinguish between active disease and latent infection, and we extend the usefulness of this model for comparative studies. Early in infection, an abnormal chest X ray, M. tuberculosis growth by gastric aspirate, and increased mycobacterium-specific gamma interferon (IFN-γ) in peripheral blood mononuclear cells (PBMCs) and bronchoalveolar lavage (BAL) cells were associated with the development of active disease. At necropsy, disease was quantified with respect to pathology and bacterial numbers. Microscopically, a spectrum of granuloma types are seen and differ with disease type. At necropsy, monkeys with active disease had more lung T cells and more IFN-γ from PBMC, BAL, and mediastinal lymph nodes than monkeys with latent infection. Finally, we have observed a spectrum of disease not only in monkeys with active disease but also in those with latent infection that provides insight into human latent tuberculosis.
doi:10.1128/IAI.00592-09
PMCID: PMC2747916  PMID: 19620341
18.  Reactivation of Latent Tuberculosis in Cynomolgus Macaques Infected with SIV Is Associated with Early Peripheral T Cell Depletion and Not Virus Load 
PLoS ONE  2010;5(3):e9611.
HIV-infected individuals with latent Mycobacterium tuberculosis (Mtb) infection are at significantly greater risk of reactivation tuberculosis (TB) than HIV-negative individuals with latent TB, even while CD4 T cell numbers are well preserved. Factors underlying high rates of reactivation are poorly understood and investigative tools are limited. We used cynomolgus macaques with latent TB co-infected with SIVmac251 to develop the first animal model of reactivated TB in HIV-infected humans to better explore these factors. All latent animals developed reactivated TB following SIV infection, with a variable time to reactivation (up to 11 months post-SIV). Reactivation was independent of virus load but correlated with depletion of peripheral T cells during acute SIV infection. Animals experiencing reactivation early after SIV infection (<17 weeks) had fewer CD4 T cells in the periphery and airways than animals reactivating in later phases of SIV infection. Co-infected animals had fewer T cells in involved lungs than SIV-negative animals with active TB despite similar T cell numbers in draining lymph nodes. Granulomas from these animals demonstrated histopathologic characteristics consistent with a chronically active disease process. These results suggest initial T cell depletion may strongly influence outcomes of HIV-Mtb co-infection.
doi:10.1371/journal.pone.0009611
PMCID: PMC2835744  PMID: 20224771
19.  Infection with Helicobacter pylori Is Associated with Protection against Tuberculosis 
PLoS ONE  2010;5(1):e8804.
Background
Helicobacter pylori, a lifelong and typically asymptomatic infection of the stomach, profoundly alters gastric immune responses, and may benefit the host in protection against other pathogens. We explored the hypothesis that H. pylori contributes to the control of infection with Mycobacterium tuberculosis.
Methodology/Principal Findings
We first examined M. tuberculosis-specific IFN-γ and H. pylori antibody responses in 339 healthy Northern Californians undergoing routine tuberculin skin testing. Of 97 subjects (29%) meeting criteria for latent tuberculosis (TB) infection (LTBI), 45 (46%) were H. pylori seropositive. Subjects with LTBI who were H. pylori-seropositive had 1.5-fold higher TB antigen-induced IFN-γ responses (p = 0.04, ANOVA), and a more Th-1 like cytokine profile in peripheral blood mononuclear cells, compared to those who were H. pylori seronegative. To explore an association between H. pylori infection and clinical outcome of TB exposure, we evaluated H. pylori seroprevalence in baseline samples from two high risk TB case-contact cohorts, and from cynomolgus macaques experimentally challenged with M. tuberculosis. Compared to 513 household contacts who did not progress to active disease during a median 24 months follow-up, 120 prevalent TB cases were significantly less likely to be H. pylori infected (AOR: 0.55, 95% CI 0.0.36–0.83, p = 0.005), though seroprevalence was not significantly different from non-progressors in 37 incident TB cases (AOR: 1.35 [95% CI 0.63–2.9] p = 0.44). Cynomolgus macaques with natural H. pylori infection were significantly less likely to progress to TB 6 to 8 months after M. tuberculosis challenge (RR: 0.31 [95% CI 0.12–0.80], p = 0.04).
Conclusions/Significance
H. pylori infection may induce bystander effects that modify the risk of active TB in humans and non-human primates. That immunity to TB may be enhanced by exposure to other microbial agents may have important implications for vaccine development and disease control.
doi:10.1371/journal.pone.0008804
PMCID: PMC2808360  PMID: 20098711
20.  Differences in Reactivation of Tuberculosis Induced from Anti-TNF Treatments Are Based on Bioavailability in Granulomatous Tissue 
PLoS Computational Biology  2007;3(10):e194.
The immune response to Mycobacterium tuberculosis (Mtb) infection is complex. Experimental evidence has revealed that tumor necrosis factor (TNF) plays a major role in host defense against Mtb in both active and latent phases of infection. TNF-neutralizing drugs used to treat inflammatory disorders have been reported to increase the risk of tuberculosis (TB), in accordance with animal studies. The present study takes a computational approach toward characterizing the role of TNF in protection against the tubercle bacillus in both active and latent infection. We extend our previous mathematical models to investigate the roles and production of soluble (sTNF) and transmembrane TNF (tmTNF). We analyze effects of anti-TNF therapy in virtual clinical trials (VCTs) by simulating two of the most commonly used therapies, anti-TNF antibody and TNF receptor fusion, predicting mechanisms that explain observed differences in TB reactivation rates. The major findings from this study are that bioavailability of TNF following anti-TNF therapy is the primary factor for causing reactivation of latent infection and that sTNF—even at very low levels—is essential for control of infection. Using a mathematical model, it is possible to distinguish mechanisms of action of the anti-TNF treatments and gain insights into the role of TNF in TB control and pathology. Our study suggests that a TNF-modulating agent could be developed that could balance the requirement for reduction of inflammation with the necessity to maintain resistance to infection and microbial diseases. Alternatively, the dose and timing of anti-TNF therapy could be modified. Anti-TNF therapy will likely lead to numerous incidents of primary TB if used in areas where exposure is likely.
Author Summary
Tuberculosis (TB) is the leading cause of death due to infectious disease in the world today. It is estimated that 2 billion people are currently infected, and although most people have latent infection, reactivation occurs due to factors such as HIV-1 and aging. Antibiotic treatments exist; however, there is still no cure and the current vaccine has proven to be unreliable. Experimental science has uncovered a plethora of immune factors that help the host control infection and maintain latency. One such factor, tumor necrosis factor alpha (TNF), is a protein that facilitates cell–cell communication during an inflammatory immune response. Animal models have shown that TNF is necessary for control of TB infection. Different types of anti-TNF drugs were developed for patients with non-TB related inflammatory diseases such as rheumatoid arthritis and Crohn's disease. Some of these patients who had latent TB suffered reactivation, especially with one drug type. Because these studies cannot be performed in the mouse, and nonhuman primates are expensive, we developed a computational model to perform virtual clinical trials (VCTs) that predicted why reactivation occurs and why it happens differentially between the two classes of drugs tested. We make recommendations on how this issue can be combated.
doi:10.1371/journal.pcbi.0030194
PMCID: PMC2041971  PMID: 17953477
21.  Early Events in Mycobacterium tuberculosis Infection in Cynomolgus Macaques†  
Infection and Immunity  2006;74(7):3790-3803.
Little is known regarding the early events of infection of humans with Mycobacterium tuberculosis. The cynomolgus macaque is a useful model of tuberculosis, with strong similarities to human tuberculosis. In this study, eight cynomolgus macaques were infected bronchoscopically with low-dose M. tuberculosis; clinical, immunologic, microbiologic, and pathologic events were assessed 3 to 6 weeks postinfection. Gross pathological abnormalities were observed as early as 3 weeks, including Ghon complex formation by 5 weeks postinfection. Caseous granulomas were observed in the lung as early as 4 weeks postinfection. Only caseous granulomas were observed in the lungs at these early time points, reflecting a rigorous initial response. T-cell activation (CD29 and CD69) and chemokine receptor (CXCR3 and CCR5) expression appeared localized to different anatomic sites. Activation markers were increased on cells from airways and only at modest levels on cells in peripheral blood. The priming of mycobacterium-specific T cells, characterized by the production of gamma interferon occurred slowly, with responses seen only after 4 weeks of infection. These responses were observed from T lymphocytes in blood, airways, and hilar lymph node, with responses predominantly localized to the site of infection. From these studies, we conclude that immune responses to M. tuberculosis are relatively slow in the local and peripheral compartments and that necrosis occurs surprisingly quickly during granuloma formation.
doi:10.1128/IAI.00064-06
PMCID: PMC1489679  PMID: 16790751

Results 1-21 (21)