PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (45)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Emergence of CD4 Independence Envelopes and Astrocyte Infection in R5 Simian-Human Immunodeficiency Virus Model of Encephalitis 
Journal of Virology  2014;88(15):8407-8420.
ABSTRACT
Human immunodeficiency virus type 1 (HIV-1) infection in the central nervous system (CNS) is characterized by replication in macrophages or brain microglia that express low levels of the CD4 receptor and is the cause of HIV-associated dementia and related cognitive and motor disorders that affect 20 to 30% of treatment-naive patients with AIDS. Independent viral envelope evolution in the brain has been reported, with the need for robust replication in resident CD4low cells, as well as CD4-negative cells, such as astrocytes, proposed as a major selective pressure. We previously reported giant-cell encephalitis in subtype B and C R5 simian-human immunodeficiency virus (SHIV)-infected macaques (SHIV-induced encephalitis [SHIVE]) that experienced very high chronic viral loads and progressed rapidly to AIDS, with varying degrees of macrophage or microglia infection and activation of these immune cells, as well as astrocytes, in the CNS. In this study, we characterized envelopes (Env) amplified from the brains of subtype B and C R5 SHIVE macaques. We obtained data in support of an association between severe neuropathological changes, robust macrophage and microglia infection, and evolution to CD4 independence. Moreover, the degree of Env CD4 independence appeared to correlate with the extent of astrocyte infection in vivo. These findings further our knowledge of the CNS viral population phenotypes that are associated with the severity of HIV/SHIV-induced neurological injury and improve our understanding of the mechanism of HIV-1 cellular tropism and persistence in the brain.
IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) infection of astrocytes in the brain has been suggested to be important in HIV persistence and neuropathogenesis but has not been definitively demonstrated in an animal model of HIV-induced encephalitis (HIVE). Here, we describe a new nonhuman primate (NHP) model of R5 simian-human immunodeficiency virus (SHIV)-induced encephalitis (SHIVE) with several classical HIVE features that include astrocyte infection. We further show an association between severe neuropathological changes, robust resident microglia infection, and evolution to CD4 independence of viruses in the central nervous system (CNS), with expansion to infection of truly CD4-negative cells in vivo. These findings support the use of the R5 SHIVE models to study the contribution of the HIV envelope and viral clades to neurovirulence and residual virus replication in the CNS, providing information that should guide efforts to eradicate HIV from the body.
doi:10.1128/JVI.01237-14
PMCID: PMC4135954  PMID: 24829360
2.  Long-Acting Integrase Inhibitor Protects Macaques from Intrarectal Simian/Human Immunodeficiency Virus 
Science (New York, N.Y.)  2014;343(6175):1151-1154.
GSK1265744 (GSK744) is an integrase strand-transfer inhibitor that has been formulated as a long-acting (LA) injectable suitable for monthly to quarterly clinical administration. GSK744 LA was administered at two time points 4 weeks apart beginning 1 week before virus administration, and macaques were challenged weekly for 8 weeks. GSK744 LA, at plasma concentrations achievable with quarterly injections in humans, protected all animals against repeated low-dose challenges. In a second experiment, macaques were given GSK744 LA 1 week before virus administration and challenged repeatedly until infection occurred. Protection decreased over time and correlated with the plasma drug levels. With a quarterly dosing schedule in humans, our results suggest that GSK744 LA could potentially decrease adherence problems associated with daily preexposure prophylaxis (PrEP).
doi:10.1126/science.1248707
PMCID: PMC4308974  PMID: 24594934
3.  HSV-2-Driven Increase in the Expression of α4β7 Correlates with Increased Susceptibility to Vaginal SHIVSF162P3 Infection 
PLoS Pathogens  2014;10(12):e1004567.
The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that HSV-2 modulates the expression of α4β7 and other homing receptors in the vaginal tissue and that this correlates with the increased risk of HIV acquisition in HSV-2 positive individuals. To test this hypothesis we used an in vivo rhesus macaque (RM) model of HSV-2 vaginal infection and a new ex vivo model of macaque vaginal explants. In vivo we found that HSV-2 latently infected RMs appeared to be more susceptible to vaginal SHIVSF162P3 infection, had higher frequency of α4β7high CD4+ T cells in the vaginal tissue and higher expression of α4β7 and CD11c on vaginal DCs. Similarly, ex vivo HSV-2 infection increased the susceptibility of the vaginal tissue to SHIVSF162P3. HSV-2 infection increased the frequencies of α4β7high CD4+ T cells and this directly correlated with HSV-2 replication. A higher amount of inflammatory cytokines in vaginal fluids of the HSV-2 infected animals was similar to those found in the supernatants of the infected explants. Remarkably, the HSV-2-driven increase in the frequency of α4β7high CD4+ T cells directly correlated with SHIV replication in the HSV-2 infected tissues. Our results suggest that the HSV-2-driven increase in availability of CD4+ T cells and DCs that express high levels of α4β7 is associated with the increase in susceptibility to SHIV due to HSV-2. This may persists in absence of HSV-2 shedding. Hence, higher availability of α4β7 positive HIV target cells in the vaginal tissue may constitute a risk factor for HIV transmission.
Author Summary
Understanding the factors that correlate with an increased risk of acquiring HIV infection is key to identify new means of preventing HIV transmission. HSV-2 infection increases the risk of HIV transmission even in absence of visible lesions and inflammation. In order to explore HSV-2− associated factors that could explain this phenomenon, we used a model of asymptomatic HSV-2 infection in macaques and ex vivo cultures of biopsied vaginal tissue. We determined that HSV-2 infection is associated with an increase in subsets of immune cells that express high levels of α4β7, a molecule needed by the cells to reach the gut and the gut lymphoid tissues. The gut is an important site for HIV infection and pathogenesis and CD4+ T cells expressing high levels of α4β7 (α4β7high) are highly susceptible to the virus. We determined that the HSV-2-driven increase in these cells correlates with an increased susceptibility of the vaginal mucosa to SIV infection. Thus, our results suggest that an increased availability of α4β7high cells at the mucosal site of HIV exposure may constitute a risk factor for HIV acquisition in HSV-2 positive and, possibly, negative individuals.
doi:10.1371/journal.ppat.1004567
PMCID: PMC4270786  PMID: 25521298
4.  The frequency of α4β7high memory CD4+ T cells correlates with susceptibility to rectal SIV infection 
Journal of acquired immune deficiency syndromes (1999)  2013;64(4):10.1097/QAI.0b013e31829f6e1a.
Background
Integrin α4β7 (α4β7) mediates the homing of CD4+ T cells to gut-associated lymphoid tissues (GALT), which constitute a highly favorable environment for HIV expansion and dissemination. HIV and SIV envelope proteins bind to and signal through α4β7 and during acute infection SIV preferentially infects α4β7high CD4+ T cells. We postulated that the availability of these cells at the time of challenge could influence mucosal SIV transmission and acute viral load (VL).
Methods
We challenged 17 rhesus macaques with 3000 TCID50 of SIVmac239 rectally and followed the subsets of α4β7+ T and dendritic cells (DCs) by flow cytometry in blood and tissues, before and after challenge.
Results
We found that the frequency of memory CD4+ T cells that expressed high levels of α4β7 (α4β7high memory CD4+ T cells) in blood before challenge correlated strongly with susceptibility to infection and acute VL. Notably, not only at the time of challenge, but also their frequency 3 weeks before challenge correlated with infection. This association extended to the rectal tissue as we observed a strong direct correlation between the frequency of α4β7high memory CD4+ T cells in blood and rectum before and after challenge. The frequency of α4β7+ myeloid DCs and α4β7high CD80+ DCs also correlated with infection and acute VL, while blood CCR5+ and CD69+ CD4+ T cells could not be associated with infection.
Conclusions
Our results suggest that animals with higher frequency of α4β7high CD4+ T cells in circulation and in rectal tissue could be more susceptible to SIV rectal transmission.
doi:10.1097/QAI.0b013e31829f6e1a
PMCID: PMC3815485  PMID: 23797688
HIV; SIV; mucosa transmission; integrin alpha-4 beta-7; susceptibility; gut
5.  MIV-150-Containing Intravaginal Rings Protect Macaque Vaginal Explants against SHIV-RT Infection 
Recent studies demonstrated that intravaginal rings (IVRs) containing 100 mg of the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 significantly protect macaques against a chimeric simian-human immunodeficiency virus that expresses the HIV-1 HxB2 reverse transcriptase (SHIV-RT) when present before and after vaginal challenge. The objectives of this study were to (i) evaluate the pharmacodynamics (PD) of MIV-150 in vaginal fluids (VF) and in ectocervical and vaginal tissues following 100-mg MIV-150 IVR exposure and to (ii) gain more insight whether pharmacokinetics (PK) of MIV-150 can predict PD. MIV-150 in VF collected at 1 day and 14 days post-MIV-150 IVR insertion inhibited ex vivo SHIV-RT infection in vaginal biopsy specimens from untreated animals (not carrying IVRs) in a dose-dependent manner. Previous PK studies demonstrated a significant increase of ectocervical and vaginal tissue MIV-150 concentrations 14 days versus 1 day post-IVR insertion, with the highest increase in vaginal tissue. Therefore, we tested PD of MIV-150 in tissues 14 days post-MIV-150 IVR insertion. Ex vivo SHIV-RT infection of vaginal, but not ectocervical, tissues collected 14 days post-MIV-150 IVR insertion was significantly inhibited compared to infection at the baseline (prior to MIV-150 IVR exposure). No changes in vaginal and ectocervical tissue infection were observed after placebo IVR exposure. Overall, these data underscore the use of the ex vivo macaque explant challenge models to evaluate tissue and VF PK/PD of candidate microbicides before in vivo animal efficacy studies. The data support further development of MIV-150-containing IVRs.
doi:10.1128/AAC.01529-13
PMCID: PMC3993268  PMID: 24614384
6.  Short Communication: A Repeated Simian Human Immunodeficiency Virus Reverse Transcriptase/Herpes Simplex Virus Type 2 Cochallenge Macaque Model for the Evaluation of Microbicides 
AIDS Research and Human Retroviruses  2014;30(11):1117-1124.
Abstract
Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2–50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 107 pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.
doi:10.1089/aid.2014.0207
PMCID: PMC4208605  PMID: 25354024
7.  A MIV-150/Zinc Acetate Gel Inhibits SHIV-RT Infection in Macaque Vaginal Explants 
PLoS ONE  2014;9(9):e108109.
To extend our observations that single or repeated application of a gel containing the NNRTI MIV-150 (M) and zinc acetate dihydrate (ZA) in carrageenan (CG) (MZC) inhibits vaginal transmission of simian/human immunodeficiency virus (SHIV)-RT in macaques, we evaluated safety and anti-SHIV-RT activity of MZC and related gel formulations ex vivo in macaque mucosal explants. In addition, safety was further evaluated in human ectocervical explants. The gels did not induce mucosal toxicity. A single ex vivo exposure to diluted MZC (1∶30, 1∶100) and MC (1∶30, the only dilution tested), but not to ZC gel, up to 4 days prior to viral challenge, significantly inhibited SHIV-RT infection in macaque vaginal mucosa. MZC's activity was not affected by seminal plasma. The antiviral activity of unformulated MIV-150 was not enhanced in the presence of ZA, suggesting that the antiviral activity of MZC was mediated predominantly by MIV-150. In vivo administration of MZC and CG significantly inhibited ex vivo SHIV-RT infection (51–62% inhibition relative to baselines) of vaginal (but not cervical) mucosa collected 24 h post last gel exposure, indicating barrier effect of CG. Although the inhibitory effect of MZC (65–74%) did not significantly differ from CG (32–45%), it was within the range of protection (∼75%) against vaginal SHIV-RT challenge 24 h after gel dosing. Overall, the data suggest that evaluation of candidate microbicides in macaque explants can inform macaque efficacy and clinical studies design. The data support advancing MZC gel for clinical evaluation.
doi:10.1371/journal.pone.0108109
PMCID: PMC4178065  PMID: 25259616
8.  Sex Hormones Selectively Impact the Endocervical Mucosal Microenvironment: Implications for HIV Transmission 
PLoS ONE  2014;9(5):e97767.
Several studies suggest that progesterone and estrogens may affect HIV transmission in different, possibly opposing ways. Nonetheless, a direct comparison of their effects on the mucosal immune system has never been done. We hypothesize that sex hormones might impact the availability of cells and immune factors important in early stages of mucosal transmission, and, in doing so influence the risk of HIV acquisition. To test this hypothesis, we employed 15 ovarectomized rhesus macaques: 5 were treated with Depot Medroxy Progesterone Acetate (DMPA), 6 with 17-β estradiol (E2) and 4 were left untreated. All animals were euthanized 5 weeks after the initiation of hormone treatment, a time post-DMPA injection associated with high susceptibility to SIV infection. We found that DMPA-treated macaques exhibited higher expression of integrin α4β7 (α4β7) on CD4+ T cells, the gut homing receptor and a marker of cells highly susceptible to HIV, in the endocervix than did the E2-treated animals. In contrast, the frequency of CCR5+ CD4+ T cells in DMPA-treated macaques was higher than in the E2-treated group in vaginal tissue, but lower in endocervix. α4β7 expression on dendritic cells (DCs) was higher in the DMPA-treated group in the endocervical tissue, but lower in vaginal tissue and on blood DCs compared with the E2-treated animals. Soluble MAdCAM-1, the α4β7 ligand, was present in the vaginal fluids of the control and E2-treated groups, but absent in the fluids from DMPA-treated animals. Both hormones modulated the expression and release of inflammatory factors and modified the distribution of sialomucins in the endocervix. In summary, we found that sex hormones profoundly impact mucosal immune factors that are directly implicated in HIV transmission. The effect is particularly significant in the endocervix. This may increase our understanding of the potential hormone-driven modulation of HIV susceptibility and potentially guide contraceptive policies in high-risk settings.
doi:10.1371/journal.pone.0097767
PMCID: PMC4022654  PMID: 24830732
9.  A Potent Combination Microbicide that Targets SHIV-RT, HSV-2 and HPV 
PLoS ONE  2014;9(4):e94547.
Prevalent infection with human herpes simplex 2 (HSV-2) or human papillomavirus (HPV) is associated with increased human immunodeficiency virus (HIV) acquisition. Microbicides that target HIV as well as these sexually transmitted infections (STIs) may more effectively limit HIV incidence. Previously, we showed that a microbicide gel (MZC) containing MIV-150, zinc acetate (ZA) and carrageenan (CG) protected macaques against simian-human immunodeficiency virus (SHIV-RT) infection and that a ZC gel protected mice against HSV-2 infection. Here we evaluated a modified MZC gel (containing different buffers, co-solvents, and preservatives suitable for clinical testing) against both vaginal and rectal challenge of animals with SHIV-RT, HSV-2 or HPV. MZC was stable and safe in vitro (cell viability and monolayer integrity) and in vivo (histology). MZC protected macaques against vaginal (p<0.0001) SHIV-RT infection when applied up to 8 hours (h) prior to challenge. When used close to the time of challenge, MZC prevented rectal SHIV-RT infection of macaques similar to the CG control. MZC significantly reduced vaginal (p<0.0001) and anorectal (p = 0.0187) infection of mice when 106 pfu HSV-2 were applied immediately after vaginal challenge and also when 5×103 pfu were applied between 8 h before and 4 h after vaginal challenge (p<0.0248). Protection of mice against 8×106 HPV16 pseudovirus particles (HPV16 PsV) was significant for MZC applied up to 24 h before and 2 h after vaginal challenge (p<0.0001) and also if applied 2 h before or after anorectal challenge (p<0.0006). MZC provides a durable window of protection against vaginal infection with these three viruses and, against HSV-2 and HPV making it an excellent candidate microbicide for clinical use.
doi:10.1371/journal.pone.0094547
PMCID: PMC3989196  PMID: 24740100
10.  Exposure to MIV-150 from a High-Dose Intravaginal Ring Results in Limited Emergence of Drug Resistance Mutations in SHIV-RT Infected Rhesus Macaques 
PLoS ONE  2014;9(2):e89300.
When microbicides used for HIV prevention contain antiretroviral drugs, there is concern for the potential emergence of drug-resistant HIV following use in infected individuals who are either unaware of their HIV infection status or who are aware but still choose to use the microbicide. Resistant virus could ultimately impact their responsiveness to treatment and/or result in subsequent transmission of drug-resistant virus. We tested whether drug resistance mutations (DRMs) would emerge in macaques infected with simian immunodeficiency virus expressing HIV reverse transcriptase (SHIV-RT) after sustained exposure to the potent non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 delivered via an intravaginal ring (IVR). We first treated 4 SHIV-RT-infected animals with daily intramuscular injections of MIV-150 over two 21 day (d) intervals separated by a 7 d drug hiatus. In all 4 animals, NNRTI DRMs (single and combinations) were detected within 14 d and expanded in proportion and diversity with time. Knowing that we could detect in vivo emergence of NNRTI DRMs in response to MIV-150, we then tested whether a high-dose MIV-150 IVR (loaded with >10 times the amount being used in a combination microbicide IVR in development) would select for resistance in 6 infected animals, modeling use of this prevention method by an HIV-infected woman. We previously demonstrated that this MIV-150 IVR provides significant protection against vaginal SHIV-RT challenge. Wearing the MIV-150 IVR for 56 d led to only 2 single DRMs in 2 of 6 animals (430 RT sequences analyzed total, 0.46%) from plasma and lymph nodes despite MIV-150 persisting in the plasma, vaginal fluids, and genital tissues. Only wild type virus sequences were detected in the genital tissues. These findings indicate a low probability for the emergence of DRMs after topical MIV-150 exposure and support the advancement of MIV-150-containing microbicides.
doi:10.1371/journal.pone.0089300
PMCID: PMC3937329  PMID: 24586674
11.  A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge 
Abstract
Herpes simplex virus-2 (HSV-2) infection increases HIV susceptibility. We previously established a rhesus macaque model of vaginal HSV-2 preexposure followed by cochallenge with HSV-2 and simian/human immunodeficiency virus-reverse transcriptase (SHIV-RT). Using this model, we showed that a gel containing the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 in carrageenan (CG) reduced SHIV-RT infection. To evaluate the efficacy of new generation microbicides against both viruses, we first established dual infection after single vaginal cochallenge with SHIV-RT and HSV-2 in HSV-2-naive macaques. All animals (6/6) became HSV-2 infected, with 4/6 coinfected with SHIV-RT. In a control group cochallenged with SHIV-RT and UV-inactivated HSV-2, 2/4 became SHIV-RT infected, and none had detectable HSV-2. Low-level HSV-2-specific antibody and T cell responses were detected in some HSV-2-infected animals. To test a CG gel containing MIV-150 and zinc acetate (MZC), which provided naive animals full protection from SHIV-RT for at least 8 h, MZC (vs. CG) was applied daily for 14 days followed by cochallenge 8 h later. MZC prevented SHIV-RT infection (0/9 infected, p=0.04 vs. 3/6 in CG controls), but only reduced HSV-2 infection by 20% (6/9 infected vs. 5/6 in CG, p=0.6). In HSV-2-infected animals, none of the gel-treated animals seroconverted, and only the CG controls had measurable HSV-2-specific T cell responses. This study shows the promise of MZC to prevent immunodeficiency virus infection (even in the presence of HSV-2) and reduce HSV-2 infection after exposure to a high-dose inoculum. Additionally, it demonstrates the potential of a macaque coinfection model to evaluate broad-spectrum microbicides.
doi:10.1089/aid.2013.0165
PMCID: PMC3910668  PMID: 24117013
12.  Generation of Lineage-Related, Mucosally Transmissible Subtype C R5 Simian-Human Immunodeficiency Viruses Capable of AIDS Development, Induction of Neurological Disease, and Coreceptor Switching in Rhesus Macaques 
Journal of Virology  2013;87(11):6137-6149.
Most human immunodeficiency virus (HIV) transmissions are initiated with CCR5 (R5)-using viruses across mucosal surfaces, with the majority in regions where HIV type 1 (HIV-1) clade C predominates. Mucosally transmissible, highly replication competent, pathogenic R5 simian-human immunodeficiency viruses (SHIVs) encoding biologically relevant clade C envelopes are therefore needed as challenge viruses in vaccine efficacy studies with nonhuman primates. Here we describe the generation of three lineage-related subtype C SHIVs through four successive rapid transfers in rhesus macaques of SHIVC109F.PB4, a molecular clone expressing the soluble-CD4 (sCD4)-sensitive CCR5-tropic clade C envelope of a recently infected subject in Zambia. The viruses differed in their monkey passage histories and neutralization sensitivities but remained R5 tropic. SHIVC109P3 and SHIVC109P3N were recovered from a passage-3 rapid-progressor animal during chronic infection (24 weeks postinfection [wpi]) and at end-stage disease (34 wpi), respectively, and are classified as tier 1B strains, whereas SHIVC109P4 was recovered from a passage-4 normal-progressor macaque at 22 wpi and is a tier 2 virus, more difficult to neutralize. All three viruses were transmitted efficiently via intrarectal inoculation, reaching peak viral loads of 107 to 109 RNA copies/ml plasma and establishing viremia at various set points. Notably, one of seven (GC98) and two of six (CL31, FI08) SHIVC109P3- and SHIVC109P3N-infected macaques, respectively, progressed to AIDS, with neuropathologies observed in GC98 and FI08, as well as coreceptor switching in the latter. These findings support the use of these new SHIVC109F.PB4-derived viruses to study the immunopathology of HIV-1 clade C infection and to evaluate envelope-based AIDS vaccines in nonhuman primates.
doi:10.1128/JVI.00178-13
PMCID: PMC3648099  PMID: 23514895
13.  A Glycolipid Adjuvant, 7DW8-5, Enhances CD8+ T Cell Responses Induced by an Adenovirus-Vectored Malaria Vaccine in Non-Human Primates  
PLoS ONE  2013;8(10):e78407.
A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP) model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA), consists of two non-replicating recombinant adenoviral (Ad) vectors, one expressing the circumsporozoite protein (CSP) and another expressing the apical membrane antigen-1 (AMA1) of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM) immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold) in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.
doi:10.1371/journal.pone.0078407
PMCID: PMC3808339  PMID: 24205224
14.  A Modified Zinc Acetate Gel, a Potential Nonantiretroviral Microbicide, Is Safe and Effective against Simian-Human Immunodeficiency Virus and Herpes Simplex Virus 2 Infection In Vivo 
We previously showed that a prototype gel comprising zinc acetate (ZA) in carrageenan (CG) protected mice against vaginal and rectal herpes simplex virus 2 (HSV-2) challenge as well as macaques against vaginal simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) challenge. In this work, we modified buffers and cosolvents to obtain a stable, nearly iso-osmolal formulation and evaluated its safety and efficacy against SHIV-RT and HSV-2. In vitro toxicity to lactobacilli and Candida albicans was determined. Macaques were given daily doses of ZA and CG (ZA/CG) or CG alone vaginally for 14 days and challenged with SHIV-RT 24 h later. Mice were challenged vaginally or rectally with HSV-2 immediately after a single gel treatment to measure efficacy or vaginally 12 h after daily gel treatment for 7 days to evaluate the gel's impact on susceptibility to HSV-2 infection. The modified ZA/CG neither affected the viability of lactobacilli or C. albicans nor enhanced vaginal HSV-2 infection after daily ZA/CG treatment. Vaginal SHIV-RT infection of macaques was reduced by 66% (P = 0.006) when macaques were challenged 24 h after the last dose of gel. We observed 60% to 80% uninfected mice after vaginal (P < 0.0001) and rectal (P = 0.008) high-dose HSV-2 challenge. The modified ZA/CG gel is safe and effective in animal models and represents a potential candidate to limit the transmission of HIV and HSV-2.
doi:10.1128/AAC.00796-13
PMCID: PMC3719770  PMID: 23752515
15.  Mucosal transmissibility, disease induction and coreceptor switching of R5 SHIVSF162P3N molecular clones in rhesus macaques 
Retrovirology  2013;10:9.
Background
Mucosally transmissible and pathogenic CCR5 (R5)-tropic simian-human immunodeficiency virus (SHIV) molecular clones are useful reagents to identity neutralization escape in HIV-1 vaccine experiments and to study the envelope evolutionary process and mechanistic basis for coreceptor switch during the course of natural infection.
Results
We observed progression to AIDS in rhesus macaques infected intrarectally with molecular clones of the pathogenic R5 SHIVSF162P3N isolate. Expansion to CXCR4 usage was documented in one diseased macaque that mounted a neutralizing antibody response and in another that failed to do so, with the latter displaying a rapid progressor phenotype. V3 loop envelop glycoprotein gp120 sequence changes that are predictive of a CXCR4 (X4)-using phenotype in HIV-1 subtype B primary isolates, specifically basic amino acid substations at positions 11 (S11R), 24 (G24R) and 25 (D25K) of the loop were detected in the two infected macaques. Functional assays showed that envelopes with V3 S11R or D25K mutation were dual-tropic, infecting CD4+ target cells that expressed either the CCR5 or CXCR4 coreceptor. And, consistent with findings of coreceptor switching in macaques infected with the pathogenic isolate, CXCR4-using variant was first detected in the lymph node of the chronically infected rhesus monkey several weeks prior to its presence in peripheral blood. Moreover, X4 emergence in this macaque coincided with persistent peripheral CD4+ T cell loss and a decline in neutralizing antibody titer that are suggestive of immune deterioration, with macrophages as the major virus-producing cells at the end-stage of disease.
Conclusions
The data showed that molecular clones derived from the R5 SHIVSF162P3N isolate are mucosally transmissible and induced disease in a manner similar to that observed in HIV-1 infected individuals, providing a relevant and useful animal infection model for in-depth analyses of host selection pressures and the env evolutionary changes that influence disease outcome, coreceptor switching and vaccine escape.
doi:10.1186/1742-4690-10-9
PMCID: PMC3571932  PMID: 23369442
R5 SHIV molecular clone; Coreceptor switch; Antiviral antibody response; Macrophage infection
16.  Delay of SHIV infection and control of viral replication in vaccinated macaques challenged in the presence of a topical microbicide 
AIDS (London, England)  2011;25(15):1833-1841.
Objective
Development of an effective vaccine or topical compound to prevent HIV transmission remains a major goal for control of the AIDS pandemic. Using a nonhuman primate model of heterosexual HIV-1 transmission, we tested whether a topical microbicide that reduces viral infectivity can potentiate the efficacy of a T-cell-based HIV vaccine.
Design
A DNA prime and rAd5 virus boost vaccination strategy was employed, and a topical microbicide against the HIV nucleocapsid protein was used. To rigorously test the combination hypothesis, the vaccine constructs contained only two transgenes and the topical microbicide inhibitor was used at a sub-optimal dose. Vaccinees were exposed in the absence and presence of the topical microbicide to repeated vaginal R5 SHIVSF162P3 challenge at an escalating dose to more closely mimic high-risk exposure of women to HIV.
Methods
Infection status was determined by PCR. Antiviral immune responses were evaluated by gp120 ELISA and intracellular cytokine staining.
Results
A significant delay in SHIV acquisition (Log-rank test; p=0.0416) was seen only in vaccinated macaques that were repeatedly challenged in the presence of the topical microbicide. Peak acute viremia was lower (Mann-Whitney test; p=0.0387) and viral burden was also reduced (Mann-Whitney test; p=0.0252) in the combination-treated animals.
Conclusions
The combined use of a topical microbicide to lower the initial viral seeding/spread and a T-cell-based vaccine to immunologically contain the early virological events of mucosal transmission holds promise as a preventive approach to control the spread of the AIDS epidemic.
doi:10.1097/QAD.0b013e32834a1d94
PMCID: PMC3508694  PMID: 21750420
HIV; vaccine; topical microbicide; nucleocapsid inhibitor; prevention
17.  A Single Dose of a MIV-150/Zinc Acetate Gel Provides 24 h of Protection Against Vaginal Simian Human Immunodeficiency Virus Reverse Transcriptase Infection, with More Limited Protection Rectally 8–24 h After Gel Use 
AIDS Research and Human Retroviruses  2012;28(11):1476-1484.
Abstract
Previously we showed that repeated vaginal application of a MIV-150/zinc acetate carrageenan (MIV-150/ZA/CG) gel and a zinc acetate carrageenan (ZA/CG) gel significantly protected macaques from vaginal simian human immunodeficiency virus reverse transcriptase (SHIV-RT) infection. Gels were applied either daily for 2 weeks or every other day for 4 weeks, and the animals were challenged 4–24 h later. Herein, we examined the effects of a single vaginal dose administered either before or after virus challenge. Encouraged by the vaginal protection seen with MIV-150/ZA/CG, we also tested it rectally. Vaginal applications of MIV-150/ZA/CG, ZA/CG, and CG gel were performed once 8–24 h before, 1 h after, or 24 h before and 1 h after vaginal challenge. Rectal applications of MIV-150/ZA/CG and CG gel were performed once 8 or 24 h before rectal challenge. While vaginal pre-challenge and pre/post-challenge application of MIV-150/ZA/CG gel offered significant protection (88%, p<0.002), post-challenge application alone did not significantly protect. ZA/CG gel reduced infection prechallenge, but not significantly, and the effect was completely lost post-challenge. Rectal application of MIV-150/ZA/CG gel afforded limited protection against rectal challenge when applied 8–24 h before challenge. Thus, MIV-150/ZA/CG gel is a highly effective vaginal microbicide that demonstrates 24 h of protection from vaginal infection and may demonstrate efficacy against rectal infection when given close to the time of HIV exposure.
doi:10.1089/aid.2012.0087
PMCID: PMC3484818  PMID: 22737981
18.  The Nonnucleoside Reverse Transcription Inhibitor MIV-160 Delivered from an Intravaginal Ring, But Not from a Carrageenan Gel, Protects Against Simian/Human Immunodeficiency Virus-RT Infection 
AIDS Research and Human Retroviruses  2012;28(11):1467-1475.
Abstract
We previously showed that a carrageenan (CG) gel containing 50 μM MIV-150 (MIV-150/CG) reduced vaginal simian/human immunodeficiency virus (SHIV)-RT infection of macaques (56%, p>0.05) when administered daily for 2 weeks with the last dose given 8 h before challenge. Additionally, when 100 mg of MIV-150 was loaded into an intravaginal ring (IVR) inserted 24 h before challenge and removed 2 weeks after challenge, >80% protection was observed (p<0.03). MIV-160 is a related NNRTI with a similar IC50, greater aqueous solubility, and a shorter synthesis. To objectively compare MIV-160 with MIV-150, herein we evaluated the antiviral effects of unformulated MIV-160 in vitro as well as the in vivo protection afforded by MIV-160 delivered in CG (MIV-160/CG gel) and in an IVR under regimens used with MIV-150 in earlier studies. Like MIV-150, MIV-160 exhibited potent antiviral activity against SHIV-RT in macaque vaginal explants. However, formulated MIV-160 exhibited divergent effects in vivo. The MIV-160/CG gel offered no protection compared to CG alone, whereas the MIV-160 IVRs protected significantly. Importantly, the results of in vitro release studies of the MIV-160/CG gel and the MIV-160 IVR suggested that in vivo efficacy paralleled the amount of MIV-160 released in vitro. Hundreds of micrograms of MIV-160 were released daily from IVRs while undetectable amounts of MIV-160 were released from the CG gel. Our findings highlight the importance of testing different modalities of microbicide delivery to identify the optimal formulation for efficacy in vivo.
doi:10.1089/aid.2012.0080
PMCID: PMC3484820  PMID: 22816564
19.  Effect of B-Cell Depletion on Coreceptor Switching in R5 Simian-Human Immunodeficiency Virus Infection of Rhesus Macaques▿  
Journal of Virology  2011;85(7):3086-3094.
We recently described a coreceptor switch in rapid progressor (RP) R5 simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N)-infected rhesus macaques that had high virus replication and undetectable or weak and transient antiviral antibody response (S. H. Ho et al., J. Virol. 81:8621-8633, 2007; S. H. Ho, N. Trunova, A. Gettie, J. Blanchard, and C. Cheng-Mayer, J. Virol. 82:5653-5656, 2008; and W. Ren et al., J. Virol. 84:340-351, 2010). The lack of antibody selective pressure, together with the observation that the emerging X4 variants were neutralization sensitive, suggested that the absence or weakening of the virus-specific humoral immune response could be an environmental factor fostering coreceptor switching in vivo. To test this possibility, we treated four macaques with 50 mg/kg of body weight of the anti-CD20 antibody rituximab every 2 to 3 weeks starting from the week prior to intravenous infection with SHIVSF162P3N for a total of six infusions. Rituximab treatment successfully depleted peripheral and lymphoid CD20+ cells for up to 25 weeks according to flow cytometry and immunohistochemical staining, with partial to full recovery in two of the four treated monkeys thereafter. Three of the four treated macaques failed to mount a detectable anti-SHIV antibody response, while the response was delayed in the remaining animal. The three seronegative macaques progressed to disease, but in none of them could the presence of X4 variants be demonstrated by V3 sequence and tropism analyses. Furthermore, viruses did not evolve early in these diseased macaques to be more soluble CD4 sensitive. These results demonstrate that the absence or diminution of humoral immune responses by itself is insufficient to drive the R5-to-X4 switch and the neutralization susceptibility of the evolving viruses.
doi:10.1128/JVI.02150-10
PMCID: PMC3067891  PMID: 21248033
20.  HSV-2 Infection of Dendritic Cells Amplifies a Highly Susceptible HIV-1 Cell Target 
PLoS Pathogens  2011;7(6):e1002109.
Herpes simplex virus type 2 (HSV-2) increases the risk of HIV-1 infection and, although several reports describe the interaction between these two viruses, the exact mechanism for this increased susceptibility remains unclear. Dendritic cells (DCs) at the site of entry of HSV-2 and HIV-1 contribute to viral spread in the mucosa. Specialized DCs present in the gut-associated lymphoid tissues produce retinoic acid (RA), an important immunomodulator, able to influence HIV-1 replication and a key mediator of integrin α4β7 on lymphocytes. α4β7 can be engaged by HIV-1 on the cell-surface and CD4+ T cells expressing high levels of this integrin (α4β7high) are particularly susceptible to HIV-1 infection. Herein we provide in-vivo data in macaques showing an increased percentage of α4β7high CD4+ T cells in rectal mucosa, iliac lymph nodes and blood within 6 days of rectal exposure to live (n = 11), but not UV-treated (n = 8), HSV-2. We found that CD11c+ DCs are a major target of HSV-2 infection in in-vitro exposed PBMCs. We determined that immature monocyte-derived DCs (moDCs) express aldehyde dehydrogenase ALDH1A1, an enzyme essential for RA production, which increases upon HSV-2 infection. Moreover, HSV-2-infected moDCs significantly increase α4β7 expression on CD4+ T lymphocytes and HIV-1 infection in DC-T cell mixtures in a RA-dependent manner. Thus, we propose that HSV-2 modulates its microenviroment, influencing DC function, increasing RA production capability and amplifying a α4β7highCD4+ T cells. These factors may play a role in increasing the susceptibility to HIV-1.
Author Summary
The vast majority of HIV-1 infections occur through genital and rectal mucosa. A better understanding of the characteristics of the mucosal microenvironment that help HIV-1 replication is critical to developing strategies for prevention of HIV-1 transmission. HSV-2 infects genital and rectal mucosa and infected individuals carry an increased risk for HIV-1 infection. Clarifying the mechanisms involved in the increased susceptibility of HSV-2 positive individuals to HIV-1 infection may help understating the characteristics of mucosal microenvironment that facilitate HIV-1 transmission. We previously described a specific interaction between HIV-1 and integrin α4β7, a signature molecule that allows lymphocytes to gain access to the gut tissue, a major site of HIV-1 replication. Vitamin A and its metabolite, retinoic acid, have an important role in balancing the immune response in the gut and in the expression of integrin α4β7. Here we describe that HSV-2 rectal infection in monkeys increases the frequency of α4β7+ CD4+ T cells in blood and rectal tissue and that this could be at least partially explained by the ability of HSV-2 infected DCs to secrete retinoic acid and up-regulate α4β7 on CD4+ T cells. These phenomena could be responsible for increasing HIV-1 replication in DC-T cell co-cultures.
doi:10.1371/journal.ppat.1002109
PMCID: PMC3128120  PMID: 21738472
21.  An Antiretroviral/Zinc Combination Gel Provides 24 Hours of Complete Protection against Vaginal SHIV Infection in Macaques 
PLoS ONE  2011;6(1):e15835.
Background
Repeated use, coitus-independent microbicide gels that do not contain antiretroviral agents also used as first line HIV therapy are urgently needed to curb HIV spread. Current formulations require high doses (millimolar range) of antiretroviral drugs and typically only provide short-term protection in macaques. We used the macaque model to test the efficacy of a novel combination microbicide gel containing zinc acetate and micromolar doses of the novel non-nucleoside reverse transcriptase inhibitor MIV-150 for up to 24 h after repeated gel application.
Methods and Findings
Rhesus macaques were vaginally challenged with SHIV-RT up to 24 h after repeated administration of microbicide versus placebo gels. Infection status was determined by measuring virologic and immunologic parameters. Combination microbicide gels containing 14 mM zinc acetate dihydrate and 50 µM MIV-150 afforded full protection (21 of 21 animals) for up to 24 h after 2 weeks of daily application. Partial protection was achieved with the MIV-150 gel (56% of control at 8 h after last application, 11% at 24 h), while the zinc acetate gel afforded more pronounced protection (67% at 8–24 h). Marked protection persisted when the zinc acetate or MIV-150/zinc acetate gels were applied every other day for 4 weeks prior to challenge 24 h after the last gel was administered (11 of 14 protected). More MIV-150 was associated with cervical tissue 8 h after daily dosing of MIV-150/zinc acetate versus MIV-150, while comparable MIV-150 levels were associated with vaginal tissues and at 24 h.
Conclusions
A combination MIV-150/zinc acetate gel and a zinc acetate gel provide significant protection against SHIV-RT infection for up to 24 h. This represents a novel advancement, identifying microbicides that do not contain anti-viral agents used to treat HIV infection and which can be used repeatedly and independently of coitus, and underscores the need for future clinical testing of their safety and ability to prevent HIV transmission in humans.
doi:10.1371/journal.pone.0015835
PMCID: PMC3016413  PMID: 21246052
22.  Tonsillar application of AT-2 SIV affords partial protection against rectal challenge with SIVmac239 
While mucosal responses are important for preventing infections with HIV, the optimal strategies for inducing them remain unclear. To evaluate vaccine strategies targeting the oral mucosal lymphoid tissue inductive sites as an approach to provide immunity at distal sites, we vaccinated healthy macaques via the palatine/lingual tonsils with aldrithiol 2 (AT-2) inactivated SIVmac239, combined with CpG-C immunostimulatory oligonucleotide (CpG-C ISS-ODN , C274) as the adjuvant. Macaques received 5 doses of C274 or control ODN C661 and AT-2 SIV on the tonsillar tissues every 6 weeks before being challenged rectally with SIVmac239, 8 weeks after the last immunization. Although no T or B cell responses were detected in the blood prior to challenge, Ab responses were detected in the rectum . Immunization with AT-2 SIV significantly reduced the frequency of infection compared to non-immunized controls, irrespective of adjuvant. In the vaccinated animals that became infected, peak viremias were somewhat reduced. SIV-specific responses were detected in the blood once animals became infected with no detectable differences between the differently immunized groups and the controls. This work provides evidence that vaccine immunogens applied to the oral mucosal-associated lymphoid tissues can provide benefit against rectal challenge, a finding with important implications for mucosal vaccination strategies.
doi:10.1097/QAI.0b013e3181b880f3
PMCID: PMC2783539  PMID: 19779309
SIV; mucosal; vaccine; CpG ISS-ODN
23.  A Tonsillar PolyICLC/AT-2 SIV Therapeutic Vaccine Maintains Low Viremia Following Antiretroviral Therapy Cessation 
PLoS ONE  2010;5(9):e12891.
Background
HIV-infected individuals rely on antiretroviral therapy (ART) to control viral replication. Despite abundant demonstrable benefits, the multiple limitations of ART point to the potential advantages of therapeutic vaccination approaches that could provide sustained host control of viral replication after discontinuation of ART. We provide evidence from a non-human primate model that a therapeutic vaccine applied to the tonsils can maintain low viral loads after cessation of ART.
Methodology/Principal Findings
Animals received 40 weeks of ART initiated 9 weeks after rectal SIVmac239 infection. During ART, animals were vaccinated (or not) with AT-2 inactivated SIVmac239 using CpG-C ISS-ODN (C274) or polyICLC as adjuvants. PolyICLC/AT-2 SIV vaccinated animals maintained viral loads <3×103 copies/ml for up to 16 weeks post-ART, whereas the C274/AT-2 SIV vaccinated and non-vaccinated animals' viremia ranged between 1×104–4×105 copies/ml (p<0.03). Neutralizing Ab activity in plasma was increased by polyICLC/AT-2 tonsillar vaccination under ART, compared to controls (p<0.03). Subsequent vaccination of all animals with polyICLC/AT-2 SIV in the absence of ART did not alter viral loads. Other immune parameters measured in blood and tissues were comparable between groups.
Conclusions/Significance
These results provide support for the potential benefit of mucosally delivered vaccines in therapeutic immunization strategies for control of AIDS virus infection.
doi:10.1371/journal.pone.0012891
PMCID: PMC2943484  PMID: 20877632
24.  In Vivo Binding and Retention of CD4-Specific DARPin 57.2 in Macaques 
PLoS ONE  2010;5(8):e12455.
Background
The recently described Designed Ankyrin Repeat Protein (DARPin) technology can produce highly selective ligands to a variety of biological targets at a low production cost.
Methodology/Principal Findings
To investigate the in vivo use of DARPins for future application to novel anti-HIV strategies, we identified potent CD4-specific DARPins that recognize rhesus CD4 and followed the fate of intravenously injected CD4-specific DARPin 57.2 in rhesus macaques. The human CD4-specific DARPin 57.2 bound macaque CD4+ cells and exhibited potent inhibitory activity against SIV infection in vitro. DARPin 57.2 or the control E3_5 DARPin was injected into rhesus macaques and the fate of cell-free and cell-bound CD4-specific DARPin was evaluated. DARPin-bound CD4+ cells were detected in the peripheral blood as early as 30 minutes after the injection, decreasing within 6 hours and being almost undetectable within 24 hours. The amount of DARPin bound was dependent on the amount of DARPin injected. CD4-specific DARPin was also detected on CD4+ cells in the lymph nodes within 30 minutes, which persisted with similar kinetics to blood. More extensive analysis using blood revealed that DARPin 57.2 bound to all CD4+ cell types (T cells, monocytes, dendritic cells) in vivo and in vitro with the amount of binding directly proportional to the amount of CD4 on the cell surface. Cell-free DARPins were also detected in the plasma, but were rapidly cleared from circulation.
Conclusions/Significance
We demonstrated that the CD4-specific DARPin can rapidly and selectively bind its target cells in vivo, warranting further studies on possible clinical use of the DARPin technology.
doi:10.1371/journal.pone.0012455
PMCID: PMC2929209  PMID: 20805996
25.  Different Tempo and Anatomic Location of Dual-Tropic and X4 Virus Emergence in a Model of R5 Simian-Human Immunodeficiency Virus Infection▿  
Journal of Virology  2009;84(1):340-351.
We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIVSF162P3N. The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4+ T-cell count but followed rather than preceded the onset of CD4+ T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIVSF162P3N infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.
doi:10.1128/JVI.01865-09
PMCID: PMC2798429  PMID: 19846515

Results 1-25 (45)