Search tips
Search criteria

Results 1-25 (53)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Inoculation dose of Mycobacterium tuberculosis does not influence priming of T cell responses in lymph nodes 
The effect of Mycobacterium tuberculosis inocula size on T cell priming in the lymph node and effector T cells in the lung remains controversial. In this study, we used a naïve mouse model, without the transfer of transgenic T cells, in conjunction with mathematical model to test whether infection with higher aerosolized inocula would lead to increased priming of M. tuberculosis-specific T cells in the lung-draining lymph node. Our data do not support that inoculum size has a measurable influence on T cell priming in the lymph nodes, but is associated with more cells overall in the lung, including T cells. To account for increased T cells in the lungs, we tested several possible mechanisms, and recruitment of T cells to the lungs was most influenced by inoculum dose. We also identified IL-10 as a possible mechanism to explain the lack of influence of inoculum dose on priming of T cells in the lymph node.
PMCID: PMC3674545  PMID: 23547119
2.  Radiologic Responses in Cynomolgus Macaques for Assessing Tuberculosis Chemotherapy Regimens 
Trials to test new drugs currently in development against tuberculosis in humans are impractical. All animal models to prioritize new regimens are imperfect, but nonhuman primates (NHPs) infected with Mycobacterium tuberculosis develop active tuberculosis (TB) disease with a full spectrum of lesion types seen in humans. Serial 2-deoxy-2-[18F]-fluoro-d-glucose (FDG) positron emission tomography (PET) with computed tomography (CT) imaging was performed on cynomolgus macaques during infection and chemotherapy with individual agents or the four-drug combination therapy most widely used globally. The size and metabolic activity of lung granulomas varied among animals and even within a single animal during development of disease. Individual granulomas within untreated animals had highly local and independent outcomes, some progressing in size and FDG uptake, while others waned, illustrating the highly dynamic nature of active TB. At necropsy, even untreated animals were found to have a proportion of sterile lesions consistent with the dynamics of this infection. A more marked reduction in overall metabolic activity in the lungs (decreased FDG uptake) was associated with effective treatment. A reduction in the size of individual lesions correlated with a lower bacterial burden at necropsy. Isoniazid treatment was associated with a transient increase in metabolic activity in individual lesions, whereas a net reduction occurred in most lesions from rifampin-treated animals. Quadruple-drug therapy resulted in the highest decrease in FDG uptake. The findings of PET-CT imaging may provide an important early correlate of the efficacy of novel combinations of new drugs that can be directly translated to human clinical trials.
PMCID: PMC3754323  PMID: 23796926
3.  IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection1 
IFN-γ is necessary in both humans and mice for control of Mycobacterium tuberculosis (M. tuberculosis). CD4 T cells are a significant source of IFN-γ during acute infection in mice and are required for control of bacterial growth and host survival. However, several other types of cells can and do produce IFN-γ during the course of the infection. We sought to determine whether IFN-γ from sources other than CD4 T cells was sufficient to control M. tuberculosis infection and whether CD4 T cells had a role in addition to IFN-γ production. To investigate the role of IFN-γ from CD4 T cells, a murine adoptive transfer model was developed in which all cells were capable of producing IFN-γ, with the exception of CD4 T cells. Our data in this system support that CD4 T cells are essential for control of infection but also that IFN-γ from CD4 T cells is necessary for host survival and optimal long-term control of bacterial burden. In addition, IFN-γ from CD4 T cells was required for a robust CD8 T cell response. IFN-γ from T cells inhibited intracellular replication of M. tuberculosis in macrophages, suggesting IFN-γ may be necessary for intracellular bactericidal activity. Thus, although CD4 T cells play additional roles in the control of M. tuberculosis infection, IFN-γ is a major function by which these cells participate in resistance to tuberculosis.
PMCID: PMC3683563  PMID: 23233724
4.  CD4 T Cell Depletion Exacerbates Acute Mycobacterium tuberculosis While Reactivation of Latent Infection Is Dependent on Severity of Tissue Depletion in Cynomolgus Macaques 
AIDS Research and Human Retroviruses  2012;28(12):1693-1702.
CD4 T cells are believed to be important in protection against Mycobacterium tuberculosis, but the relative contribution to control of initial or latent infection is not known. Antibody-mediated depletion of CD4 T cells in M. tuberculosis-infected cynomolgus macaques was used to study the role of CD4 T cells during acute and latent infection. Anti-CD4 antibody severely reduced levels of CD4 T cells in blood, airways, and lymph nodes. Increased pathology and bacterial burden were observed in CD4-depleted monkeys during the first 8 weeks of infection compared to controls. CD4-depleted monkeys had greater interferon (IFN)-γ expression and altered expression of CD8 T cell activation markers. During latent infection, CD4 depletion resulted in clinical reactivation in only three of six monkeys. Reactivation was associated with lower CD4 T cells in the hilar lymph nodes. During both acute and latent infection, CD4 depletion was associated with reduced percentages of CXCR3+ expressing CD8 T cells, reported to be involved in T cell recruitment, regulatory function, and effector and memory T cell maturation. CXCR3+ CD8 T cells from hilar lymph nodes had more mycobacteria-specific cytokine expression and greater coexpression of multiple cytokines compared to CXCR3− CD8 T cells. CD4 T cells are required for protection against acute infection but reactivation from latent infection is dependent on the severity of depletion in the draining lymph nodes. CD4 depletion influences CD8 T cell function. This study has important implications for human HIV–M. tuberculosis coinfection.
PMCID: PMC3505050  PMID: 22480184
5.  CD4 Regulatory T cells in a Cynomolgus Macaque Model of Mycobacterium tuberculosis Infection123 
The Journal of infectious diseases  2010;202(4):533-541.
Mycobacterium tuberculosis (M. tuberculosis) infection in humans results in either latent infection or active tuberculosis (TB). We sought to determine whether a higher frequency of regulatory T cells predispose an individual toward active disease or whether the Tregs develop in response to active disease.
In cynomolgus macaques infected with a low dose M. tuberculosis approximately 50% develop primary TB and 50% present with latent infection. 41 animals were followed for 6-8 months to correlate the frequency of Foxp3+ cells in peripheral blood and airways with outcome of infection.
In all animals, the frequency of Tregs (CD4+Foxp3+) in peripheral blood rapidly decreased and simultaneously increased in the airways. Latently infected monkeys had a significantly higher frequency of Tregs in peripheral blood prior to infection and during early infection than those that developed active disease. Monkeys with active disease had increased Tregs in PBMC as they developed disease.
Our data suggest that increased Tregs in active disease occur in response to more inflammation, rather than act as a causative factor in progression to active disease.
PMCID: PMC3683560  PMID: 20617900
Mycobacterium tuberculosis; Regulatory T cells; non-human primate
6.  Monocyte-Derived IL-5 Reduces TNF Production by Mycobacterium tuberculosis–specific CD4 T Cells during SIV/M. tuberculosis Coinfection 
The Journal of Immunology Author Choice  2013;190(12):6320-6328.
HIV-infected individuals are significantly more susceptible to tuberculosis (TB) than uninfected individuals. Although it is established that HIV reduces Mycobacterium tuberculosis–specific T cell responses, the causes of this dysfunction are not known. We used the cynomolgus macaque model of TB to demonstrate that ex vivo SIV reduces the frequency of M. tuberculosis–specific TNF and IFN-γ–producing T cells within 24 h after infection. In vivo, T cell IFN-γ responses in granulomas from animals with SIV/M. tuberculosis coinfection were lower than SIV-negative animals with active TB. The SIV effects on the inhibition of T cell responses were primarily on APCs and not the T cells directly. Specifically, reductions in the frequency of TNF-producing M. tuberculosis–specific CD4 T cells were caused, at least in part, by SIV-induced production of monocyte derived IL-5.
PMCID: PMC3677169  PMID: 23690470
7.  Understanding Latent Tuberculosis: A Moving Target 
Tuberculosis (TB) remains a threat to the health of people worldwide. Infection with Mycobacterium tuberculosis can result in active TB or, more commonly, latent infection. Latently infected persons, of which there are estimated to be ~2 billion in the world, represent an enormous reservoir of potential reactivation TB, which can spread to other people. The immunology of TB is complex and multifaceted. Identifying the immune mechanisms that lead to control of initial infection and prevent reactivation of latent infection is crucial to combating this disease.
PMCID: PMC3311959  PMID: 20562268
8.  Simian Immunodeficiency Virus-Induced Changes in T Cell Cytokine Responses in Cynomolgus Macaques with Latent Mycobacterium tuberculosis Infection Are Associated with Timing of Reactivation 
Understanding the early immunologic events accompanying reactivated tuberculosis (TB) in HIV-infected individuals may yield insight into causes of reactivation and improve treatment modalities. We used the cynomolgus macaque (Macaca fascicularis) model of HIV–Mycobacterium tuberculosis coinfection to investigate the dynamics of multifunctional T cell responses and granuloma T cell phenotypes in reactivated TB. CD4+ and CD8+ T cells expressing Th1 cytokines (IFN-γ, IL-2, TNF) and Th2 cytokines (IL-4 and IL-10) were followed from latent M. tuberculosis infection to reactivation after coinfection with a pathogenic SIV. Coinfected animals experienced increased Th1 cytokine responses to M. tuberculosis Ags above the latent-response baseline 3–5 wk post-SIV infection that corresponded with peak plasma viremia. Th2 cytokine expression was not Ag specific, but strong, transient IL-4 expression was noted 4–7 wk post-SIV infection. Animals reactivating <17 wk post-SIV infection had significantly more multifunctional CD4+ T cells 3–5 wk post-SIV infection and more Th2-polarized and fewer Th0-, Th1-polarized CD8+ T cells during weeks 1–10 post-SIV infection than animals reactivating >26 wk post-SIV infection. Granuloma T cells included Th0-, Th1-, and Th2-polarized phenotypes but were particularly rich in cytolytic (CD107+) T cells. When combined with the changes in peripheral blood T cells, these factors indicate that events during acute HIV infection are likely to include distortions in proinflammatory and anti-inflammatory T cell responses within the granuloma that have significant effects on reactivation of latent TB. Moreover, it appears that mycobacteria-specific multifunctional T cells are better correlates of Ag load (i.e., disease status) than of protection.
PMCID: PMC3311978  PMID: 21317393
9.  The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection  
It is estimated that one-third of the world’s population is infected with Mycobacterium tuberculosis. Infection typically remains latent, but it can reactivate to cause clinical disease. The only vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is largely ineffective, and ways to enhance its efficacy are being developed. Of note, the candidate booster vaccines currently under clinical development have been designed to improve BCG efficacy but not prevent reactivation of latent infection. Here, we demonstrate that administering a multistage vaccine that we term H56 in the adjuvant IC31 as a boost to vaccination with BCG delays and reduces clinical disease in cynomolgus macaques challenged with M. tuberculosis and prevents reactivation of latent infection. H56 contains Ag85B and ESAT-6, which are two of the M. tuberculosis antigens secreted in the acute phase of infection, and the nutrient stress–induced antigen Rv2660c. Boosting with H56/IC31 resulted in efficient containment of M. tuberculosis infection and reduced rates of clinical disease, as measured by clinical parameters, inflammatory markers, and improved survival of the animals compared with BCG alone. Boosted animals showed reduced pulmonary pathology and extrapulmonary dissemination, and protection correlated with a strong recall response against ESAT-6 and Rv2660c. Importantly, BCG/H56-vaccinated monkeys did not reactivate latent infection after treatment with anti-TNF antibody. Our results indicate that H56/IC31 boosting is able to control late-stage infection with M. tuberculosis and contain latent tuberculosis, providing a rationale for the clinical development of H56.
PMCID: PMC3248283  PMID: 22133873
10.  TNF neutralization results in disseminated disease during acute and latent M. tuberculosis infection with normal granuloma structure 
Arthritis and rheumatism  2010;62(2):340-350.
An increased risk of tuberculosis has been documented in humans treated with tumor necrosis factor alpha (TNF) neutralizing agents. In murine models, impaired signaling by TNF caused exacerbation of both acute and chronic infection associated with aberrant granuloma formation and maintenance. The non-human primate model of tuberculosis provides an opportunity to study immune modulation in the setting of TNF neutralization during primary and latent tuberculosis. Administration of TNF neutralizing agents prior to M. tuberculosis infection resulted in fulminant and disseminated disease by 8 weeks post-infection. Neutralization of TNF in latently infected cynomolgus macaques caused reactivation in a majority of animals as determined by gross pathology and bacterial burden. A spectrum of dissemination was noted including extrapulmonary disease. Surprisingly, monkeys who developed primary and reactivation tuberculosis after TNF neutralization had similar granuloma structure and composition compared to active control monkeys. TNF neutralization was associated with increased IL-12, decreased CCL4, increased chemokine receptor expression and reduced mycobacteria-specific IFN-γ production in blood but not to the affected mediastinal lymph nodes. Finally, the first signs of reactivation often occurred in thoracic lymph nodes. These findings have important clinical implications for determining the mechanism of TNF-neutralization-related tuberculosis.
PMCID: PMC3047004  PMID: 20112395
TNF; tuberculosis; non-human primate
11.  Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy 
Annals of the American Thoracic Society  2014;11(Suppl 4):S201-S210.
Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The “Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy” session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.
PMCID: PMC4200570  PMID: 25148426
antimicrobials; influenza vaccines; respiratory syncytial virus; tuberculosis
12.  Variability in Tuberculosis Granuloma T Cell Responses Exists, but a Balance of Pro- and Anti-inflammatory Cytokines Is Associated with Sterilization 
PLoS Pathogens  2015;11(1):e1004603.
Lung granulomas are the pathologic hallmark of tuberculosis (TB). T cells are a major cellular component of TB lung granulomas and are known to play an important role in containment of Mycobacterium tuberculosis (Mtb) infection. We used cynomolgus macaques, a non-human primate model that recapitulates human TB with clinically active disease, latent infection or early infection, to understand functional characteristics and dynamics of T cells in individual granulomas. We sought to correlate T cell cytokine response and bacterial burden of each granuloma, as well as granuloma and systemic responses in individual animals. Our results support that each granuloma within an individual host is independent with respect to total cell numbers, proportion of T cells, pattern of cytokine response, and bacterial burden. The spectrum of these components overlaps greatly amongst animals with different clinical status, indicating that a diversity of granulomas exists within an individual host. On average only about 8% of T cells from granulomas respond with cytokine production after stimulation with Mtb specific antigens, and few “multi-functional” T cells were observed. However, granulomas were found to be “multi-functional” with respect to the combinations of functional T cells that were identified among lesions from individual animals. Although the responses generally overlapped, sterile granulomas had modestly higher frequencies of T cells making IL-17, TNF and any of T-1 (IFN-γ, IL-2, or TNF) and/or T-17 (IL-17) cytokines than non-sterile granulomas. An inverse correlation was observed between bacterial burden with TNF and T-1/T-17 responses in individual granulomas, and a combinatorial analysis of pair-wise cytokine responses indicated that granulomas with T cells producing both pro- and anti-inflammatory cytokines (e.g. IL-10 and IL-17) were associated with clearance of Mtb. Preliminary evaluation suggests that systemic responses in the blood do not accurately reflect local T cell responses within granulomas.
Author Summary
The characteristic feature of Mycobacterium tuberculosis (Mtb) infection is the formation of lesions, which are organized structures of immune cells in the lungs called granulomas, which contain the bacteria. When the granuloma functions effectively, it can kill the bacteria. T cells (a type of immune cell, also present in granulomas) are known to play an important role in control of tuberculosis. However, functions of T cells at individual granuloma levels are unknown. Here, we studied the functional characteristics of T cells, which are defined by the production of chemical messengers (cytokines) at the granuloma level in a non-human primate model. We compared the relationship between cytokine response and the number of bacteria (Mtb) in each granuloma. Each granuloma was found to be unique, suggesting different types exist within an animal. Only a small proportion of T cells produced any cytokine, but different types of cytokines were observed within each granuloma. A balance between different types of cytokine was associated with more killing of bacteria in granulomas. Understanding how to improve the T cell responses to obtain killing of bacteria in the granuloma will be important for vaccine development.
PMCID: PMC4303275  PMID: 25611466
13.  Effects of Tumor Necrosis Factor Alpha on Host Immune Response in Chronic Persistent Tuberculosis: Possible Role for Limiting Pathology 
Infection and Immunity  2001;69(3):1847-1855.
Reactivation of latent tuberculosis contributes significantly to the incidence of disease caused by Mycobacterium tuberculosis. The mechanisms involved in the containment of latent tuberculosis are poorly understood. Using the low-dose model of persistent murine tuberculosis in conjunction with MP6-XT22, a monoclonal antibody that functionally neutralizes tumor necrosis factor alpha (TNF-α), we examined the effects of TNF-α on the immunological response of the host in both persistent and reactivated tuberculous infections. The results confirm an essential role for TNF-α in the containment of persistent tuberculosis. TNF-α neutralization resulted in fatal reactivation of persistent tuberculosis characterized by a moderately increased tissue bacillary burden and severe pulmonic histopathological deterioration that was associated with changes indicative of squamous metaplasia and fluid accumulation in the alveolar space. Analysis of pulmonic gene and protein expression of mice in the low-dose model revealed that nitric oxide synthase was attenuated during MP6-XT22-induced reactivation, but was not totally suppressed. Interleukin-12p40 and gamma interferon gene expression in TNF-α-neutralized mice was similar to that in control mice. In contrast, interleukin-10 expression was augmented in the TNF-α-neutralized mice. In summary, results of this study suggest that TNF-α plays an essential role in preventing reactivation of persistent tuberculosis, modulates the pulmonic expression of specific immunologic factors, and limits the pathological response of the host.
PMCID: PMC98092  PMID: 11179363
14.  Predicting lymph node output efficiency using systems biology 
Journal of theoretical biology  2013;335:169-184.
Dendritic cells (DCs) capture pathogens and foreign antigen (Ag) in peripheral tissues and migrate to secondary lymphoid tissues, such as lymph nodes (LNs), where they present processed Ag as MHC-bound peptide (pMHC) to naïve T cells. Interactions between DCs and T cells result, over periods of hours, in activation, clonal expansion and differentiation of antigen-specific T cells, leading to primed cells that can now participate in immune responses. Two-photon microscopy (2PM) has been widely adopted to analyze lymphocyte dynamics and can serve as a powerful in vivo assay for cell trafficking and activation over short length and time scales. Linking biological phenomena between vastly different spatiotemporal scales can be achieved using a systems biology approach. We developed a 3D agent-based cellular model of a LN that allows for the simultaneous in silico simulation of T cell trafficking, activation and production of effector cells under different antigen (Ag) conditions. The model anatomy is based on in situ analysis of LN sections (from primates and mice) and cell dynamics based on quantitative measurements from 2PM imaging of mice. Our simulations make three important predictions. First, T cell encounters by DCs and T cell receptor (TCR) repertoire scanning are more efficient in a 3D model compared with 2D, suggesting that a 3D model is needed to analyze LN function. Second, LNs are able to produce primed CD4+T cells at the same efficiency over broad ranges of cognate frequencies (from 10−5 to 10−2). Third, reducing the time that naïve T cells are required to bind DCs before becoming activated will increase the rate at which effector cells are produced. This 3D model provides a robust platform to study how T cell trafficking and activation dynamics relate to the efficiency of T cell priming and clonal expansion. We envision that this systems biology approach will provide novel insights for guiding vaccine development and understanding immune responses to infection.
PMCID: PMC3783027  PMID: 23816876
Agent based model; 3D; Priming; Effector; T cells
15.  Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms 
Macrophages in granulomas are both anti-mycobacterial effector and host cell for Mycobacterium tuberculosis(M.tb), yet basic aspects of macrophage diversity and function within the complex structures of granulomas remain poorly understood. To address this, we examined myeloid cell phenotypes and expression of enzymes correlated with host defense in macaque and human granulomas. Macaque granulomas had upregulated inducible and endothelial nitric oxide synthase (iNOS and eNOS) and arginase (Arg1 and Arg2) expression and enzyme activity compared to non-granulomatous tissue. Immunohistochemical analysis indicated macrophages adjacent to uninvolved normal tissue were more likely to express CD163, while epithelioid macrophages in regions where bacteria reside strongly expressed CD11c, CD68 and HAM56. Calprotectin-positive neutrophils were abundant in regions adjacent to caseum. iNOS, eNOS, Arg1 and Arg2 proteins were identified in macrophages and localized similarly in granulomas across species, with greater eNOS expression and ratio of iNOS:Arg1 expression in epithelioid macrophages, as compared to cells in the lymphocyte cuff. iNOS, Arg1 and Arg2 expression in neutrophils was also identified. The combination of phenotypic and functional markers support that macrophages with anti-inflammatory phenotypes localized to outer regions of granulomas while the inner regions were more likely to contain macrophages with pro-inflammatory, presumably bactericidal, phenotypes. Together these data support the concept that granulomas have organized microenvironments that balance anti-microbial anti-inflammatory responses to limit pathology in the lungs.
PMCID: PMC3746594  PMID: 23749634
16.  Sterilization of granulomas is common in both active and latent tuberculosis despite extensive within-host variability in bacterial killing 
Nature medicine  2013;20(1):75-79.
Over 30% of the world’s population is infected with Mycobacterium tuberculosis (Mtb), yet only ~5–10% will develop clinical disease1. Despite considerable effort, we understand little about what distinguishes individuals who progress to active tuberculosis (TB) from those who remain latent for decades. The variable course of disease is recapitulated in cynomolgus macaques infected with Mtb2. Active disease in macaques is defined by clinical, microbiologic and immunologic signs and occurs in ~45% of animals, while the remaining are clinically asymptomatic2,3. Here, we use barcoded Mtb isolates and quantitative measures of culturable and cumulative bacterial burden to show that most lesions are likely founded by a single bacterium and reach similar maximum burdens. Despite common origins, the fate of individual lesions varies substantially within the same host. Strikingly, in active disease, the host sterilizes some lesions even while others progress. Our data suggest that lesional heterogeneity arises, in part, through differential killing of bacteria after the onset of adaptive immunity. Thus, individual lesions follow diverse and overlapping trajectories, suggesting critical responses occur at a lesional level to ultimately determine the clinical outcome of infection. Defining the local factors that dictate outcome will be important in developing effective interventions to prevent active TB.
PMCID: PMC3947310  PMID: 24336248
17.  Monocyte-derived IL-5 reduces TNF production by M. tuberculosis-specific CD4 T cells during SIV/M. tuberculosis co-infection1 
HIV-infected individuals are significantly more susceptible to tuberculosis (TB) than HIV-uninfected individuals. Although it is established that HIV reduces M. tuberculosis-specific T cell responses, the causes of this dysfunction are not known. We used the cynomolgus macaque model of TB to demonstrate that ex vivo SIV reduces the frequency of M. tuberculosis-specific TNF and IFN-γ producing T cells within 24hrs post-infection. In vivo, T cell IFN-γ responses in granulomas from animals with SIV/M. tuberculosis co-infection were lower than SIV-negative animals with active TB. The SIV effects on inhibition of T cell responses were primarily on antigen presenting cells and not the T cells directly. Specifically, reductions in the frequency of TNF-producing M. tuberculosis-specific CD4 T cells were caused, at least in part, by SIV-induced production of monocyte derived IL-5.
PMCID: PMC3677169  PMID: 23690470
18.  Differential Virulence and Disease Progression following Mycobacterium tuberculosis Complex Infection of the Common Marmoset (Callithrix jacchus) 
Infection and Immunity  2013;81(8):2909-2919.
Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades.
PMCID: PMC3719573  PMID: 23716617
19.  Latent tuberculosis: what the host “sees”? 
Immunologic research  2011;50(0):202-212.
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), is the most successful pathogen of mankind and remains a major threat to global health as the leading cause of death due to a bacterial pathogen. Yet 90–95% of those who are infected with MTB remain otherwise healthy. These people are classified as “latently infected,” but remain a reservoir from which active TB cases will continue to develop (“reactivation tuberculosis”). Latent infection is defined by the absence of clinical symptoms of TB in addition to a delayed hypersensitivity reaction to the purified protein derivative of MTB used in tuberculin skin test or a T-cell response to MTB-specific antigens. In the absence of reliable control measures for tuberculosis, understanding latent MTB infection and subsequent reactivation is a research priority. This review aims to summarize the recent findings in human and non-human primate models of tuberculosis that have led to new concepts of latent tuberculosis.
PMCID: PMC3788603  PMID: 21717066
Tuberculosis; Mycobacterium tuberculosis infection; Latent tuberculosis; Non-human Primate models
20.  Proteome-Scale Antibody Responses and Outcome of Mycobacterium tuberculosis Infection in Nonhuman Primates and in Tuberculosis Patients  
The Journal of Infectious Diseases  2012;206(5):697-705.
Background.Biomarkers of progression from latent Mycobacterium tuberculosis infection to active tuberculosis are needed. We assessed correlations between infection outcome and antibody responses in macaques and humans by high-throughput, proteome-scale serological studies.
Methods.Mycobacterium tuberculosis proteome microarrays were probed with serial sera from macaques representing various infection outcomes and with single-point human sera from tuberculosis suspects. Fluorescence intensity data were analyzed by calculating Z scores and associated P values. Temporal changes in macaque antibody responses were analyzed by polynomial regression. Correlations between human responses and sputum bacillary burden were assessed by quantile and hurdle regression.
Results.Macaque outcome groups exhibited distinct antibody profiles: early, transient responses in latent infection and stable antibody increase in active and reactivation disease. In humans, antibody levels and reactive protein numbers increased with bacillary burden. Responses to a subset of 10 proteins were more tightly associated with disease state than reactivity to the broader reactive proteome.
Conclusions.Integration of macaque and human data reveals dynamic properties of antibody responses in relation to outcome and leads to actionable findings for translational research. These include the potential of antibody responses to detect acute infection and preclinical tuberculosis and to identify serodiagnostic proteins for the spectrum of bacillary burden in tuberculosis.
PMCID: PMC3491745  PMID: 22732925
21.  B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response 
PLoS Pathogens  2013;9(7):e1003472.
We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization.
Author Summary
Mycobacterium tuberculosis poses a serious threat to public health globally. It has been well established that T cells are critical in protection against M. tuberculosis. The role of B cells and humoral immunity in the process is less well understood. We previously showed that B cells and humoral immunity regulate the immune response against M. tuberculosis. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may modulate the development of vaccine-induced protective immunity. The data reveal that B cells can regulate neutrophilia during M. tuberculosis infection and BCG vaccination by modulating the IL-17 response. Vaccination studies show that excess neutrophilia adversely affects the development of BCG-elicited Th1 response. These observations suggest that B cells can optimize the development of protective immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Understanding the mechanisms by which B cells and humoral immunity modulate the immune response during M. tuberculosis infection and BCG immunization, particularly those that regulate IL-17 levels and neutrophilia, may lead to the development of novel strategies for the control of the tubercle bacillus, including efficacious vaccines.
PMCID: PMC3708864  PMID: 23853593
22.  Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability 
Increased rates of tuberculosis (TB) reactivation have been reported in humans treated with tumor necrosis factor-α (TNF)-neutralizing drugs, and higher rates are observed with anti-TNF antibodies (e.g. infliximab) as compared with TNF receptor fusion protein (etanercept). Mechanisms driving differential reactivation rates and differences in drug action are not known. We use a computational model of a TB granuloma formation that includes TNF/TNF receptor dynamics to elucidate these mechanisms. Our analyses yield three important insights. First, drug binding to membrane-bound TNF critically impairs granuloma function. Second, a higher risk of reactivation induced from antibody-type treatments is primarily due to differences in TNF/drug binding kinetics and permeability. Apoptotic and cytolytic activities of antibodies and pharmacokinetic fluctuations in blood concentration of drug are not essential to inducing TB reactivation. Third, we predict specific host factors that, if augmented, would improve granuloma function during anti-TNF therapy. Our findings have implications for the development of safer anti-TNF drugs to treat inflammatory diseases.
PMCID: PMC3311778  PMID: 22379032
23.  The mutation rate of mycobacterial repetitive unit loci in strains of M. tuberculosis from cynomolgus macaque infection 
BMC Genomics  2013;14:145.
Mycobacterial interspersed repetitive units (MIRUs) are minisatellites within the Mycobacterium tuberculosis (Mtb) genome. Copy number variation (CNV) in MIRU loci is used for epidemiological typing, making the rate of variation important for tracking the transmission of Mtb strains. In this study, we developed and assessed a whole-genome sequencing (WGS) approach to detect MIRU CNV in Mtb. We applied this methodology to a panel of Mtb strains isolated from the macaque model of tuberculosis (TB), the animal model that best mimics human disease. From these data, we have estimated the rate of MIRU variation in the host environment, providing a benchmark rate for future epidemiologic work.
We assessed variation at the 24 MIRU loci used for typing in a set of Mtb strains isolated from infected cynomolgus macaques. We previously performed WGS of these strains and here have applied both read depth (RD) and paired-end mapping (PEM) metrics to identify putative copy number variants. To assess the relative power of these approaches, all MIRU loci were resequenced using Sanger sequencing. We detected two insertion/deletion events both of which could be identified as candidates by PEM criteria. With these data, we estimate a MIRU mutation rate of 2.70 × 10-03 (95% CI: 3.30 × 10-04- 9.80 × 10-03) per locus, per year.
Our results represent the first experimental estimate of the MIRU mutation rate in Mtb. This rate is comparable to the highest previous estimates gathered from epidemiologic data and meta-analyses. Our findings allow for a more rigorous interpretation of data gathered from MIRU typing.
PMCID: PMC3635867  PMID: 23496945
Mycobacterium tuberculosis; Mycobacterial interspersed repetitive units; MIRU; Molecular epidemiology; Copy number variation; Whole-genome sequencing; Read depth; Paired-end mapping; Mutation rate
24.  Infection Dynamics and Response to Chemotherapy in a Rabbit Model of Tuberculosis using [18F]2-Fluoro-Deoxy-d-Glucose Positron Emission Tomography and Computed Tomography 
With a host of new antitubercular chemotherapeutics in development, methods to assess the activity of these agents beyond mouse efficacy are needed to prioritize combinations for clinical trials. Lesions in Mycobacterium tuberculosis-infected rabbits are hypoxic, with histopathologic features that closely resemble those of human tuberculous lesions. Using [18F]2-fluoro-deoxy-d-glucose ([18F]FDG) positron emission tomography–computed tomography (PET-CT) imaging, we studied the dynamics of tuberculosis infection in rabbits, revealing an initial inflammatory response followed by a consolidative chronic disease. Five weeks after infection, as much as 23% of total lung volume was abnormal, but this was contained and to some extent reversed naturally by 9 weeks. During development of this chronic state, individual lesions in the same animal had very different fates, ranging from complete resolution to significant progression. Lesions that remained through the initial stage showed an increase in volume and tissue density over time by CT. Initiation of chemotherapy using either isoniazid (INH) or rifampin (RIF) during chronic infection reduced bacterial load with quantitative changes in [18F]FDG uptake, lesion density and total lesion volume measured by CT. The [18F]FDG PET uptake in lesions was significantly reduced with as little as 1 week of treatment, while the volume and density of lesions changed more slowly. The results from this study suggest that rabbits may be a useful surrogate species for evaluating novel chemotherapies and understanding changes in both PET and CT scans in human clinical trials.
PMCID: PMC3421588  PMID: 22687508
25.  Comparison of the Effects of Pathogenic Simian Human Immunodeficiency Virus Strains SHIV-89.6P and SHIV-KU2 in Cynomolgus Macaques 
Factors explaining why human immunodeficiency virus (HIV) enhances the risk of reactivated tuberculosis (TB) are poorly understood. Unfortunately, experimental models of HIV-induced reactivated TB are lacking. We examined whether cynomolgus macaques, which accurately model latent TB in humans, could be used to model pathogenesis of HIV infection in the lungs and associated lymph nodes. These experiments precede studies modeling the effects of HIV infection on latent TB. We infected two groups of macaques with chimeric simian–human immunodeficiency viruses (SHIV-89.6P and SHIV-KU2) and followed viral titers and immunologic parameters including lymphocytes numbers and phenotype in the blood, bronchoalveolar lavage cells, and lymph nodes over the course of infection. Tissues from the lungs, liver, kidney, spleen, and lymph nodes were similarly examined at necropsy. Both strains produced dramatic CD4+ T cell depletion. Plasma titers were not different between viruses, but we found more SHIV-89.6P in the lungs. Both viruses induced similar patterns of cell activation markers. SHIV-89.6P induced more IFN-γ expression than SHIV-KU2. These results indicate SHIV-89.6P and SHIV-KU2 infect cynomolgus macaques and may be used to accurately model effects of HIV infection on latent TB.
PMCID: PMC3311977  PMID: 18366326

Results 1-25 (53)